Skip to main content
Top
Published in: BMC Cancer 1/2019

Open Access 01-12-2019 | Fluorescence in Situ Hybridization | Research article

Cytogenetic characterization of the malignant primitive neuroectodermal SK-PN-DW tumor cell line

Authors: Na Du, Wanguo Bao, Kaiyu Zhang, Xianglan Lu, Rebecca Crew, Xianfu Wang, Guangming Liu, Feng Wang

Published in: BMC Cancer | Issue 1/2019

Login to get access

Abstract

Background

The SK-PN-DW cell line was established in 1979 and is commercially available. Despite the use of this cell line as an in vitro model for functional and therapeutic studies of malignant primitive neuroectodermal tumor (PNET), there is a lack of complete information about the genetic alterations that are present at the cytogenetic level. Thus, the current study aimed to characterize the cytogenetic profile of this cell line.

Methods

Routine G-banded chromosome analysis, fluorescence in situ hybridization, and oligonucleotide array comparative genomic hybridization assays were performed to characterize the chromosomal changes in this cell line.

Results

The G-banded karyotype analysis showed that the number of chromosomes in this cell line ranged between 36 and 41. Importantly, all cells displayed a loss of chromosomes Y, 11, 13, and 18. However, some cells showed an additional loss of chromosome 10. Additionally, the observed structural changes indicated: a) unbalanced translocation between chromosomes 1 and 7; b) translocation between chromosomes 11 and 22 at breakpoints 11q24 and 22q12, which is a classical translocation that is associated with Ewing sarcoma; c) a derivative chromosome due to a whole arm translocation between chromosomes 16 and 17 at likely breakpoints 16p10 and 17q10; and d) possible rearrangement in the short arm of chromosome 18. Moreover, a variable number of double minutes were also observed in each metaphase cell. Furthermore, the microarray assay results not only demonstrated genomic-wide chromosomal imbalance in this cell line and precisely placed chromosomal breakpoints on unbalanced, rearranged chromosomes, but also revealed information about subtle chromosomal changes and the chromosomal origin of double minutes. Finally, the fluorescence in situ hybridization assay confirmed the findings of the routine cytogenetic analysis and microarrays.

Conclusion

The accurate determination of the cytogenetic profile of the SK-PN-DW cell line is helpful in enabling the research community to utilize this cell line for future identity and comparability studies, in addition to demonstrating the utility of the complete cytogenetic profile, as a public resource.
Literature
1.
go back to reference Nardone RM. Curbing rampant cross-contamination and misidentification of cell lines. Biotechniques. 2008;45:221–7.CrossRefPubMed Nardone RM. Curbing rampant cross-contamination and misidentification of cell lines. Biotechniques. 2008;45:221–7.CrossRefPubMed
2.
go back to reference American Type Culture Collection Standards Development Organization Workgroup ASN. Cell line misidentification: the beginning of the end. Nat Rev Cancer. 2010;10:441–8.CrossRef American Type Culture Collection Standards Development Organization Workgroup ASN. Cell line misidentification: the beginning of the end. Nat Rev Cancer. 2010;10:441–8.CrossRef
3.
go back to reference Arsham MS, Barch MJ, Lawce HJ, Association of Genetic Technologists. The AGT cytogenetics laboratory manual. Fourth edition. ed. Hoboken, New Jersey: John Wiley & Sons Inc.; 2016. p. p. Arsham MS, Barch MJ, Lawce HJ, Association of Genetic Technologists. The AGT cytogenetics laboratory manual. Fourth edition. ed. Hoboken, New Jersey: John Wiley & Sons Inc.; 2016. p. p.
4.
go back to reference Smoll NR, Drummond KJ. The incidence of medulloblastomas and primitive neurectodermal tumours in adults and children. J Clin Neurosci. 2012;19:1541–4.CrossRefPubMed Smoll NR, Drummond KJ. The incidence of medulloblastomas and primitive neurectodermal tumours in adults and children. J Clin Neurosci. 2012;19:1541–4.CrossRefPubMed
5.
go back to reference Batsakis JG, Mackay B, el-Naggar AK. Ewing's sarcoma and peripheral primitive neuroectodermal tumor: an interim report. Ann Otol Rhinol Laryngol. 1996;105:838–43.CrossRefPubMed Batsakis JG, Mackay B, el-Naggar AK. Ewing's sarcoma and peripheral primitive neuroectodermal tumor: an interim report. Ann Otol Rhinol Laryngol. 1996;105:838–43.CrossRefPubMed
6.
go back to reference Khong PL, Chan GC, Shek TW, Tam PK, Chan FL. Imaging of peripheral PNET: common and uncommon locations. Clin Radiol. 2002;57:272–7.CrossRefPubMed Khong PL, Chan GC, Shek TW, Tam PK, Chan FL. Imaging of peripheral PNET: common and uncommon locations. Clin Radiol. 2002;57:272–7.CrossRefPubMed
7.
go back to reference La Quaglia MP. Peripheral Neuroectodermal tumors. In: Teich SaC, Donna, editor. Reoperative pediatric surgery. 1 ed: Humana press; 2008. p. 427–434. La Quaglia MP. Peripheral Neuroectodermal tumors. In: Teich SaC, Donna, editor. Reoperative pediatric surgery. 1 ed: Humana press; 2008. p. 427–434.
8.
go back to reference Taylor C, Patel K, Jones T, Kiely F, De Stavola BL, Sheer D. Diagnosis of Ewing's sarcoma and peripheral neuroectodermal tumour based on the detection of t(11;22) using fluorescence in situ hybridisation. Br J Cancer. 1993;67:128–33.CrossRefPubMedPubMedCentral Taylor C, Patel K, Jones T, Kiely F, De Stavola BL, Sheer D. Diagnosis of Ewing's sarcoma and peripheral neuroectodermal tumour based on the detection of t(11;22) using fluorescence in situ hybridisation. Br J Cancer. 1993;67:128–33.CrossRefPubMedPubMedCentral
9.
go back to reference Potluri VR, Gilbert F, Helsen C, Helson L. Primitive neuroectodermal tumor cell lines: chromosomal analysis of five cases. Cancer Genet Cytogenet. 1987;24:75–86.CrossRefPubMed Potluri VR, Gilbert F, Helsen C, Helson L. Primitive neuroectodermal tumor cell lines: chromosomal analysis of five cases. Cancer Genet Cytogenet. 1987;24:75–86.CrossRefPubMed
10.
go back to reference Ambati SR, Lopes EC, Kosugi K, Mony U, Zehir A, Shah SK, Taldone T, Moreira AL, Meyers PA, Chiosis G, Malcolm AS. Pre-clinical efficacy of PU-H71, a novel HSP90 inhibitor, alone and in combination with bortezomib in Ewing sarcoma. Moore Mol Oncol. 2014;8:323–36.CrossRefPubMed Ambati SR, Lopes EC, Kosugi K, Mony U, Zehir A, Shah SK, Taldone T, Moreira AL, Meyers PA, Chiosis G, Malcolm AS. Pre-clinical efficacy of PU-H71, a novel HSP90 inhibitor, alone and in combination with bortezomib in Ewing sarcoma. Moore Mol Oncol. 2014;8:323–36.CrossRefPubMed
11.
go back to reference Xu J, Liu P, Meng X, Bai J, Fu S, Guan R, Sun W. Association between sister chromatid exchange and double minute chromosomes in human tumor cells. Mol Cytogenet. 2015;8:91.CrossRefPubMedPubMedCentral Xu J, Liu P, Meng X, Bai J, Fu S, Guan R, Sun W. Association between sister chromatid exchange and double minute chromosomes in human tumor cells. Mol Cytogenet. 2015;8:91.CrossRefPubMedPubMedCentral
12.
go back to reference Lazcoz P, Munoz J, Nistal M, Pestana A, Encio I, Castresana JS. Frequent promoter hypermethylation of RASSF1A and CASP8 in neuroblastoma. BMC Cancer. 2006;6:254.CrossRefPubMedPubMedCentral Lazcoz P, Munoz J, Nistal M, Pestana A, Encio I, Castresana JS. Frequent promoter hypermethylation of RASSF1A and CASP8 in neuroblastoma. BMC Cancer. 2006;6:254.CrossRefPubMedPubMedCentral
13.
go back to reference Biegel JA, Rorke LB, Packer RJ, Sutton LN, Schut L, Bonner K, et al. Isochromosome 17q in primitive neuroectodermal tumors of the central nervous system. Genes Chromosomes Cancer. 1989;1:139–47.CrossRefPubMed Biegel JA, Rorke LB, Packer RJ, Sutton LN, Schut L, Bonner K, et al. Isochromosome 17q in primitive neuroectodermal tumors of the central nervous system. Genes Chromosomes Cancer. 1989;1:139–47.CrossRefPubMed
14.
go back to reference Northcott PA, Nakahara Y, Wu X, Feuk L, Ellison DW, Croul S, et al. Multiple recurrent genetic events converge on control of histone lysine methylation in medulloblastoma. Nat Genet. 2009;41:465–72.CrossRefPubMedPubMedCentral Northcott PA, Nakahara Y, Wu X, Feuk L, Ellison DW, Croul S, et al. Multiple recurrent genetic events converge on control of histone lysine methylation in medulloblastoma. Nat Genet. 2009;41:465–72.CrossRefPubMedPubMedCentral
15.
go back to reference Bigner SH, Mark J, Friedman HS, Biegel JA, Bigner DD. Structural chromosomal abnormalities in human medulloblastoma. Cancer Genet Cytogenet. 1988;30:91–101.CrossRefPubMed Bigner SH, Mark J, Friedman HS, Biegel JA, Bigner DD. Structural chromosomal abnormalities in human medulloblastoma. Cancer Genet Cytogenet. 1988;30:91–101.CrossRefPubMed
16.
go back to reference Ortiz-Vega S, Khokhlatchev A, Nedwidek M, Zhang XF, Dammann R, Pfeifer GP, et al. The putative tumor suppressor RASSF1A homodimerizes and heterodimerizes with the Ras-GTP binding protein Nore1. Oncogene. 2002;21:1381–90.CrossRefPubMed Ortiz-Vega S, Khokhlatchev A, Nedwidek M, Zhang XF, Dammann R, Pfeifer GP, et al. The putative tumor suppressor RASSF1A homodimerizes and heterodimerizes with the Ras-GTP binding protein Nore1. Oncogene. 2002;21:1381–90.CrossRefPubMed
17.
go back to reference Fieuw A, Kumps C, Schramm A, Pattyn F, Menten B, Antonacci F, et al. Identification of a novel recurrent 1q42.2-1qter deletion in high risk MYCN single copy 11q deleted neuroblastomas. Int J Cancer. 2012;130:2599–606.CrossRefPubMed Fieuw A, Kumps C, Schramm A, Pattyn F, Menten B, Antonacci F, et al. Identification of a novel recurrent 1q42.2-1qter deletion in high risk MYCN single copy 11q deleted neuroblastomas. Int J Cancer. 2012;130:2599–606.CrossRefPubMed
18.
go back to reference Yin XL, Pang JC, Ng HK. Identification of a region of homozygous deletion on 8p22-23.1 in medulloblastoma. Oncogene. 2002;21:1461–8.CrossRefPubMed Yin XL, Pang JC, Ng HK. Identification of a region of homozygous deletion on 8p22-23.1 in medulloblastoma. Oncogene. 2002;21:1461–8.CrossRefPubMed
19.
go back to reference Huse JT, Holland EC. Targeting brain cancer: advances in the molecular pathology of malignant glioma and medulloblastoma. Nat Rev Cancer. 2010;10:319–31.CrossRefPubMed Huse JT, Holland EC. Targeting brain cancer: advances in the molecular pathology of malignant glioma and medulloblastoma. Nat Rev Cancer. 2010;10:319–31.CrossRefPubMed
20.
go back to reference Park AK, Lee SJ, Phi JH, Wang KC, Kim DG, Cho BK, et al. Prognostic classification of pediatric medulloblastoma based on chromosome 17p loss, expression of MYCC and MYCN, and Wnt pathway activation. Neuro-Oncology. 2012;14:203–14.CrossRefPubMed Park AK, Lee SJ, Phi JH, Wang KC, Kim DG, Cho BK, et al. Prognostic classification of pediatric medulloblastoma based on chromosome 17p loss, expression of MYCC and MYCN, and Wnt pathway activation. Neuro-Oncology. 2012;14:203–14.CrossRefPubMed
21.
go back to reference Pfister S, Remke M, Benner A, Mendrzyk F, Toedt G, Felsberg J, et al. Outcome prediction in pediatric medulloblastoma based on DNA copy-number aberrations of chromosomes 6q and 17q and the MYC and MYCN loci. J Clin Oncol. 2009;27:1627–36.CrossRefPubMed Pfister S, Remke M, Benner A, Mendrzyk F, Toedt G, Felsberg J, et al. Outcome prediction in pediatric medulloblastoma based on DNA copy-number aberrations of chromosomes 6q and 17q and the MYC and MYCN loci. J Clin Oncol. 2009;27:1627–36.CrossRefPubMed
22.
go back to reference Garson JA, Pemberton LF, Sheppard PW, Varndell IM, Coakham HB, Kemshead JT. N-myc gene expression and oncoprotein characterisation in medulloblastoma. Br J Cancer. 1989;59:889–94.CrossRefPubMedPubMedCentral Garson JA, Pemberton LF, Sheppard PW, Varndell IM, Coakham HB, Kemshead JT. N-myc gene expression and oncoprotein characterisation in medulloblastoma. Br J Cancer. 1989;59:889–94.CrossRefPubMedPubMedCentral
25.
go back to reference Bigner SH, Friedman HS, Vogelstein B, Oakes WJ, Bigner DD. Amplification of the c-myc gene in human medulloblastoma cell lines and xenografts. Cancer Res. 1990;50:2347–50.PubMed Bigner SH, Friedman HS, Vogelstein B, Oakes WJ, Bigner DD. Amplification of the c-myc gene in human medulloblastoma cell lines and xenografts. Cancer Res. 1990;50:2347–50.PubMed
26.
go back to reference Lawlor KG, Narayanan R. Persistent expression of the tumor suppressor gene DCC is essential for neuronal differentiation. Cell Growth Differ. 1992;3:609–16.PubMed Lawlor KG, Narayanan R. Persistent expression of the tumor suppressor gene DCC is essential for neuronal differentiation. Cell Growth Differ. 1992;3:609–16.PubMed
27.
go back to reference Mehlen P, Rabizadeh S, Snipas SJ, Assa-Munt N, Salvesen GS, Bredesen DE. The DCC gene product induces apoptosis by a mechanism requiring receptor proteolysis. Nature. 1998;395:801–4.CrossRefPubMed Mehlen P, Rabizadeh S, Snipas SJ, Assa-Munt N, Salvesen GS, Bredesen DE. The DCC gene product induces apoptosis by a mechanism requiring receptor proteolysis. Nature. 1998;395:801–4.CrossRefPubMed
29.
go back to reference Lewis TB, Coffin CM, Bernard PS. Differentiating Ewing's sarcoma from other round blue cell tumors using a RT-PCR translocation panel on formalin-fixed paraffin-embedded tissues. Mod Pathol. 2007;20:397–404.CrossRefPubMed Lewis TB, Coffin CM, Bernard PS. Differentiating Ewing's sarcoma from other round blue cell tumors using a RT-PCR translocation panel on formalin-fixed paraffin-embedded tissues. Mod Pathol. 2007;20:397–404.CrossRefPubMed
30.
go back to reference Ban J, Bennani-Baiti IM, Kauer M, Schaefer KL, Poremba C, Jug G, et al. EWS-FLI1 suppresses NOTCH-activated p53 in Ewing's sarcoma. Cancer Res. 2008;68:7100–9.CrossRefPubMedPubMedCentral Ban J, Bennani-Baiti IM, Kauer M, Schaefer KL, Poremba C, Jug G, et al. EWS-FLI1 suppresses NOTCH-activated p53 in Ewing's sarcoma. Cancer Res. 2008;68:7100–9.CrossRefPubMedPubMedCentral
31.
go back to reference Li Y, Tanaka K, Fan X, Nakatani F, Li X, Nakamura T, et al. Inhibition of the transcriptional function of p53 by EWS-Fli1 chimeric protein in Ewing family tumors. Cancer Lett. 2010;294:57–65.CrossRefPubMed Li Y, Tanaka K, Fan X, Nakatani F, Li X, Nakamura T, et al. Inhibition of the transcriptional function of p53 by EWS-Fli1 chimeric protein in Ewing family tumors. Cancer Lett. 2010;294:57–65.CrossRefPubMed
32.
go back to reference Li Y, Li X, Fan G, Fukushi J, Matsumoto Y, Iwamoto Y, et al. Impairment of p53 acetylation by EWS-Fli1 chimeric protein in Ewing family tumors. Cancer Lett. 2012;320:14–22.CrossRefPubMed Li Y, Li X, Fan G, Fukushi J, Matsumoto Y, Iwamoto Y, et al. Impairment of p53 acetylation by EWS-Fli1 chimeric protein in Ewing family tumors. Cancer Lett. 2012;320:14–22.CrossRefPubMed
33.
go back to reference Mollenhauer J, Holmskov U, Wiemann S, Krebs I, Herbertz S, Madsen J, et al. The genomic structure of the DMBT1 gene: evidence for a region with susceptibility to genomic instability. Oncogene. 1999;18:6233–40.CrossRefPubMed Mollenhauer J, Holmskov U, Wiemann S, Krebs I, Herbertz S, Madsen J, et al. The genomic structure of the DMBT1 gene: evidence for a region with susceptibility to genomic instability. Oncogene. 1999;18:6233–40.CrossRefPubMed
34.
go back to reference Pang JC, Dong Z, Zhang R, Liu Y, Zhou LF, Chan BW, et al. Mutation analysis of DMBT1 in glioblastoma, medulloblastoma and oligodendroglial tumors. Int J Cancer. 2003;105:76–81.CrossRefPubMed Pang JC, Dong Z, Zhang R, Liu Y, Zhou LF, Chan BW, et al. Mutation analysis of DMBT1 in glioblastoma, medulloblastoma and oligodendroglial tumors. Int J Cancer. 2003;105:76–81.CrossRefPubMed
Metadata
Title
Cytogenetic characterization of the malignant primitive neuroectodermal SK-PN-DW tumor cell line
Authors
Na Du
Wanguo Bao
Kaiyu Zhang
Xianglan Lu
Rebecca Crew
Xianfu Wang
Guangming Liu
Feng Wang
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2019
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-019-5625-1

Other articles of this Issue 1/2019

BMC Cancer 1/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine