Skip to main content
Top
Published in: BMC Cancer 1/2019

Open Access 01-12-2019 | Metastasis | Research article

Mitochondrial autoimmunity and MNRR1 in breast carcinogenesis

Authors: Siddhesh Aras, Marie-Claire Maroun, Yeohan Song, Sudeshna Bandyopadhyay, Azadeh Stark, Zeng-Quan Yang, Michael P. Long, Lawrence I. Grossman, Félix Fernández-Madrid

Published in: BMC Cancer | Issue 1/2019

Login to get access

Abstract

Background

Autoantibodies function as markers of tumorigenesis and have been proposed to enhance early detection of malignancies. We recently reported, using immunoscreening of a T7 complementary DNA (cDNA) library of breast cancer (BC) proteins with sera from patients with BC, the presence of autoantibodies targeting several mitochondrial DNA (mtDNA)-encoded subunits of the electron transport chain (ETC) in complexes I, IV, and V.

Methods

In this study, we have characterized the role of Mitochondrial-Nuclear Retrograde Regulator 1 (MNRR1, also known as CHCHD2), identified on immunoscreening, in breast carcinogenesis. We assessed the protein as well as transcript levels of MNRR1 in BC tissues and in derived cell lines representing tumors of graded aggressiveness. Mitochondrial function was also assayed and correlated with the levels of MNRR1. We studied the invasiveness of BC derived cells and the effect of MNRR1 levels on expression of genes associated with cell proliferation and migration such as Rictor and PGC-1α. Finally, we manipulated levels of MNRR1 to assess its effect on mitochondria and on some properties linked to a metastatic phenotype.

Results

We identified a nuclear DNA (nDNA)-encoded mitochondrial protein, MNRR1, that was significantly associated with the diagnosis of invasive ductal carcinoma (IDC) of the breast by autoantigen microarray analysis. In focusing on the mechanism of action of MNRR1 we found that its level was nearly twice as high in malignant versus benign breast tissue and up to 18 times as high in BC cell lines compared to MCF10A control cells, suggesting a relationship to aggressive potential. Furthermore, MNRR1 affected levels of multiple genes previously associated with cancer metastasis.

Conclusions

MNRR1 regulates multiple genes that function in cell migration and cancer metastasis and is higher in cell lines derived from aggressive tumors. Since MNRR1 was identified as an autoantigen in breast carcinogenesis, the present data support our proposal that both mitochondrial autoimmunity and MNRR1 activity in particular are involved in breast carcinogenesis. Virtually all other nuclear encoded genes identified on immunoscreening of invasive BC harbor an MNRR1 binding site in their promoters, thereby placing MNRR1 upstream and potentially making it a novel marker for BC metastasis.
Literature
1.
go back to reference Mariotto AB, Etzioni R, Hurlbert M, Penberthy L, Mayer M. Estimation of the number of women living with metastatic breast cancer in the United States. Cancer Epidemiol Biomark Prev. 2017;26(6):809–15.CrossRef Mariotto AB, Etzioni R, Hurlbert M, Penberthy L, Mayer M. Estimation of the number of women living with metastatic breast cancer in the United States. Cancer Epidemiol Biomark Prev. 2017;26(6):809–15.CrossRef
2.
go back to reference Miller JW, Hanson V, Johnson GD, Royalty JE, Richardson LC. From cancer screening to treatment: service delivery and referral in the national breast and cervical cancer early detection program. Cancer. 2014;120(Suppl 16):2549–56.CrossRefPubMed Miller JW, Hanson V, Johnson GD, Royalty JE, Richardson LC. From cancer screening to treatment: service delivery and referral in the national breast and cervical cancer early detection program. Cancer. 2014;120(Suppl 16):2549–56.CrossRefPubMed
3.
go back to reference Desantis CE, Ma J, Goding Sauer A, Newman LA, Jemal A. Breast cancer statistics, 2017, racial disparity in mortality by state. CA Cancer J Clin. 2017;67(6):439–48.CrossRefPubMed Desantis CE, Ma J, Goding Sauer A, Newman LA, Jemal A. Breast cancer statistics, 2017, racial disparity in mortality by state. CA Cancer J Clin. 2017;67(6):439–48.CrossRefPubMed
4.
5.
go back to reference Fernandez-Madrid F, Maroun MC, Olivero OA, Long M, Stark A, Grossman LI, et al. Autoantibodies in breast cancer sera are not epiphenomena and may participate in carcinogenesis. BMC Cancer. 2015;15:407.CrossRefPubMedCentral Fernandez-Madrid F, Maroun MC, Olivero OA, Long M, Stark A, Grossman LI, et al. Autoantibodies in breast cancer sera are not epiphenomena and may participate in carcinogenesis. BMC Cancer. 2015;15:407.CrossRefPubMedCentral
6.
go back to reference Maroun MC, Grossman LI, Lancaster WD, Long M, Arshad R, Aboukasm G, et al. Mitochondrial encoded targets of breast cancer anti-mitochondrial antibodies implications of mitochondrial autoimmunity for breast cancer progression. Sci J Molec Biomarkers Diag. 2017;1(1):001–8. Maroun MC, Grossman LI, Lancaster WD, Long M, Arshad R, Aboukasm G, et al. Mitochondrial encoded targets of breast cancer anti-mitochondrial antibodies implications of mitochondrial autoimmunity for breast cancer progression. Sci J Molec Biomarkers Diag. 2017;1(1):001–8.
7.
go back to reference Aras S, Arrabi H, Purandare N, Hüttemann M, Kamholz J, Zuchner S, et al. Abl2 kinase phosphorylates bi-organellar regulator MNRR1 in mitochondria, stimulating respiration. Biochim Biophys Acta. 2017;1864(2):440–8.CrossRef Aras S, Arrabi H, Purandare N, Hüttemann M, Kamholz J, Zuchner S, et al. Abl2 kinase phosphorylates bi-organellar regulator MNRR1 in mitochondria, stimulating respiration. Biochim Biophys Acta. 2017;1864(2):440–8.CrossRef
8.
go back to reference Aras S, Bai M, Lee I, Springett R, Hüttemann M, Grossman LI. MNRR1 (formerly CHCHD2) is a bi-organellar regulator of mitochondrial metabolism. Mitochondrion. 2015;20:43–51.CrossRefPubMed Aras S, Bai M, Lee I, Springett R, Hüttemann M, Grossman LI. MNRR1 (formerly CHCHD2) is a bi-organellar regulator of mitochondrial metabolism. Mitochondrion. 2015;20:43–51.CrossRefPubMed
9.
go back to reference Aras S, Pak O, Sommer N, Finley R Jr, Hüttemann M, Weissmann N, et al. Oxygen-dependent expression of cytochrome c oxidase subunit 4-2 gene expression is mediated by transcription factors RBPJ, CXXC5 and CHCHD2. Nucleic Acids Res. 2013;41(4):2255–66.CrossRefPubMedPubMedCentral Aras S, Pak O, Sommer N, Finley R Jr, Hüttemann M, Weissmann N, et al. Oxygen-dependent expression of cytochrome c oxidase subunit 4-2 gene expression is mediated by transcription factors RBPJ, CXXC5 and CHCHD2. Nucleic Acids Res. 2013;41(4):2255–66.CrossRefPubMedPubMedCentral
10.
go back to reference Hüttemann M, Lee I, Liu J, Grossman LI. Transcription of mammalian cytochrome c oxidase subunit IV-2 is controlled by a novel conserved oxygen responsive element. FEBS J. 2007;274(21):5737–48.CrossRefPubMed Hüttemann M, Lee I, Liu J, Grossman LI. Transcription of mammalian cytochrome c oxidase subunit IV-2 is controlled by a novel conserved oxygen responsive element. FEBS J. 2007;274(21):5737–48.CrossRefPubMed
11.
go back to reference Wei Y, Vellanki RN, Coyaud E, Ignatchenko V, Li L, Krieger JR, et al. CHCHD2 is coamplified with EGFR in NSCLC and regulates mitochondrial function and cell migration. Mol Cancer Res. 2015;13(7):1119–29.CrossRefPubMed Wei Y, Vellanki RN, Coyaud E, Ignatchenko V, Li L, Krieger JR, et al. CHCHD2 is coamplified with EGFR in NSCLC and regulates mitochondrial function and cell migration. Mol Cancer Res. 2015;13(7):1119–29.CrossRefPubMed
12.
go back to reference Song R, Yang B, Gao X, Zhang J, Sun L, Wang P, et al. Cyclic adenosine monophosphate response element-binding protein transcriptionally regulates CHCHD2 associated with the molecular pathogenesis of hepatocellular carcinoma. Mol Med Rep. 2015;11(6):4053–62.CrossRefPubMedPubMedCentral Song R, Yang B, Gao X, Zhang J, Sun L, Wang P, et al. Cyclic adenosine monophosphate response element-binding protein transcriptionally regulates CHCHD2 associated with the molecular pathogenesis of hepatocellular carcinoma. Mol Med Rep. 2015;11(6):4053–62.CrossRefPubMedPubMedCentral
13.
go back to reference Fernandez-Madrid F, Tang N, Alansari H, Granda JL, Tait L, Amirikia KC, et al. Autoantibodies to annexin xi-a and other autoantigens in the diagnosis of breast cancer. Cancer Res. 2004;64(15):5089–96.CrossRefPubMed Fernandez-Madrid F, Tang N, Alansari H, Granda JL, Tait L, Amirikia KC, et al. Autoantibodies to annexin xi-a and other autoantigens in the diagnosis of breast cancer. Cancer Res. 2004;64(15):5089–96.CrossRefPubMed
14.
go back to reference Wolman SR, Heppner GH. Genetic heterogeneity in breast cancer. J Natl Cancer Inst. 1992;84(7):469–70.CrossRefPubMed Wolman SR, Heppner GH. Genetic heterogeneity in breast cancer. J Natl Cancer Inst. 1992;84(7):469–70.CrossRefPubMed
15.
go back to reference Purandare N, Somayajulu M, Hüttemann M, Grossman LI, Aras S. The cellular stress proteins CHCHD10 and MNRR1 (CHCHD2): partners in mitochondrial and nuclear function and dysfunction. J Biol Chem. 2018;293(17):6517–29.CrossRefPubMedPubMedCentral Purandare N, Somayajulu M, Hüttemann M, Grossman LI, Aras S. The cellular stress proteins CHCHD10 and MNRR1 (CHCHD2): partners in mitochondrial and nuclear function and dysfunction. J Biol Chem. 2018;293(17):6517–29.CrossRefPubMedPubMedCentral
16.
go back to reference Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–10.CrossRefPubMed Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–10.CrossRefPubMed
18.
go back to reference Benaki D, Zikos C, Evangelou A, Livaniou E, Vlassi M, Mikros E, et al. Solution structure of humanin, a peptide against Alzheimer's disease-related neurotoxicity. Biochem Biophys Res Commun. 2005;329(1):152–60.CrossRefPubMed Benaki D, Zikos C, Evangelou A, Livaniou E, Vlassi M, Mikros E, et al. Solution structure of humanin, a peptide against Alzheimer's disease-related neurotoxicity. Biochem Biophys Res Commun. 2005;329(1):152–60.CrossRefPubMed
19.
go back to reference Kao J, Salari K, Bocanegra M, Choi YL, Girard L, Gandhi J, et al. Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery. PLoS One. 2009;4(7):e6146.CrossRefPubMedPubMedCentral Kao J, Salari K, Bocanegra M, Choi YL, Girard L, Gandhi J, et al. Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery. PLoS One. 2009;4(7):e6146.CrossRefPubMedPubMedCentral
20.
go back to reference Soule HD, Maloney TM, Wolman SR, Peterson WD Jr, Brenz R, Mcgrath CM, et al. Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10. Cancer Res. 1990;50(18):6075–86.PubMed Soule HD, Maloney TM, Wolman SR, Peterson WD Jr, Brenz R, Mcgrath CM, et al. Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10. Cancer Res. 1990;50(18):6075–86.PubMed
21.
go back to reference Chung S, Yao J, Suyama K, Bajaj S, Qian X, Loudig OD, et al. N-cadherin regulates mammary tumor cell migration through AKT3 suppression. Oncogene. 2013;32(4):422–30.CrossRefPubMed Chung S, Yao J, Suyama K, Bajaj S, Qian X, Loudig OD, et al. N-cadherin regulates mammary tumor cell migration through AKT3 suppression. Oncogene. 2013;32(4):422–30.CrossRefPubMed
22.
go back to reference Grottke A, Ewald F, Lange T, Norz D, Herzberger C, Bach J, et al. Downregulation of AKT3 increases migration and metastasis in triple negative breast cancer cells by upregulating s100a4. PLoS One. 2016;11(1):e0146370.CrossRefPubMedPubMedCentral Grottke A, Ewald F, Lange T, Norz D, Herzberger C, Bach J, et al. Downregulation of AKT3 increases migration and metastasis in triple negative breast cancer cells by upregulating s100a4. PLoS One. 2016;11(1):e0146370.CrossRefPubMedPubMedCentral
23.
go back to reference Kim D, Kim S, Koh H, Yoon SO, Chung AS, Cho KS, et al. AKT/PKB promotes cancer cell invasion via increased motility and metalloproteinase production. FASEB J. 2001;15(11):1953–62.CrossRefPubMed Kim D, Kim S, Koh H, Yoon SO, Chung AS, Cho KS, et al. AKT/PKB promotes cancer cell invasion via increased motility and metalloproteinase production. FASEB J. 2001;15(11):1953–62.CrossRefPubMed
24.
go back to reference Morrison Joly M, Hicks DJ, Jones B, Sanchez V, Estrada MV, Young C, et al. RICTOR/MTORC2 drives progression and therapeutic resistance of HER2-amplified breast cancers. Cancer Res. 2016;76(16):4752–64.CrossRefPubMed Morrison Joly M, Hicks DJ, Jones B, Sanchez V, Estrada MV, Young C, et al. RICTOR/MTORC2 drives progression and therapeutic resistance of HER2-amplified breast cancers. Cancer Res. 2016;76(16):4752–64.CrossRefPubMed
25.
go back to reference Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of AKT/PKB by the rictor-mtor complex. Science. 2005;307(5712):1098–101.CrossRefPubMed Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of AKT/PKB by the rictor-mtor complex. Science. 2005;307(5712):1098–101.CrossRefPubMed
26.
go back to reference Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell. 1998;92(6):829–39.CrossRefPubMed Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell. 1998;92(6):829–39.CrossRefPubMed
27.
go back to reference Lebleu VS, O'connell JT, Gonzalez Herrera KN, Wikman H, Pantel K, Haigis MC, et al. PGC-1alpha mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nat Cell Biol. 2014;16(10):992–1003 1001–1015.CrossRefPubMedPubMedCentral Lebleu VS, O'connell JT, Gonzalez Herrera KN, Wikman H, Pantel K, Haigis MC, et al. PGC-1alpha mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nat Cell Biol. 2014;16(10):992–1003 1001–1015.CrossRefPubMedPubMedCentral
28.
go back to reference Porporato PE, Payen VL, Perez-Escuredo J, De Saedeleer CJ, Danhier P, Copetti T, et al. A mitochondrial switch promotes tumor metastasis. Cell Rep. 2014;8(3):754–66.CrossRefPubMed Porporato PE, Payen VL, Perez-Escuredo J, De Saedeleer CJ, Danhier P, Copetti T, et al. A mitochondrial switch promotes tumor metastasis. Cell Rep. 2014;8(3):754–66.CrossRefPubMed
29.
go back to reference Sotgia F, Whitaker-Menezes D, Martinez-Outschoorn UE, Flomenberg N, Birbe RC, Witkiewicz AK, et al. Mitochondrial metabolism in cancer metastasis: visualizing tumor cell mitochondria and the “reverse Warburg effect” in positive lymph node tissue. Cell Cycle. 2012;11(7):1445–54.CrossRefPubMedPubMedCentral Sotgia F, Whitaker-Menezes D, Martinez-Outschoorn UE, Flomenberg N, Birbe RC, Witkiewicz AK, et al. Mitochondrial metabolism in cancer metastasis: visualizing tumor cell mitochondria and the “reverse Warburg effect” in positive lymph node tissue. Cell Cycle. 2012;11(7):1445–54.CrossRefPubMedPubMedCentral
30.
go back to reference Kong H, Chandel NS. Regulation of redox balance in cancer and T cells. J Biol Chem. 2018;293(20):7499–507.CrossRefPubMed Kong H, Chandel NS. Regulation of redox balance in cancer and T cells. J Biol Chem. 2018;293(20):7499–507.CrossRefPubMed
31.
go back to reference Seo M, Lee WH, Suk K. Identification of novel cell migration-promoting genes by a functional genetic screen. FASEB J. 2010;24(2):464–78.CrossRefPubMed Seo M, Lee WH, Suk K. Identification of novel cell migration-promoting genes by a functional genetic screen. FASEB J. 2010;24(2):464–78.CrossRefPubMed
32.
go back to reference Liu Y, Clegg HV, Leslie PL, Di J, Tollini LA, He Y, et al. CHCHD2 inhibits apoptosis by interacting with BCL-xL to regulate BAX activation. Cell Death Differ. 2015;22(6):1035–46.CrossRefPubMed Liu Y, Clegg HV, Leslie PL, Di J, Tollini LA, He Y, et al. CHCHD2 inhibits apoptosis by interacting with BCL-xL to regulate BAX activation. Cell Death Differ. 2015;22(6):1035–46.CrossRefPubMed
33.
go back to reference Lai X, Umbricht CB, Fisher K, Bishop J, Shi Q, Chen S. Identification of novel biomarker and therapeutic target candidates for diagnosis and treatment of follicular carcinoma. J Proteome. 2017;166:59–67.CrossRef Lai X, Umbricht CB, Fisher K, Bishop J, Shi Q, Chen S. Identification of novel biomarker and therapeutic target candidates for diagnosis and treatment of follicular carcinoma. J Proteome. 2017;166:59–67.CrossRef
34.
go back to reference Lamb R, Harrison H, Hulit J, Smith DL, Lisanti MP, Sotgia F. Mitochondria as new therapeutic targets for eradicating cancer stem cells: quantitative proteomics and functional validation via MCT1/2 inhibition. Oncotarget. 2014;5(22):11029–37.CrossRefPubMedPubMedCentral Lamb R, Harrison H, Hulit J, Smith DL, Lisanti MP, Sotgia F. Mitochondria as new therapeutic targets for eradicating cancer stem cells: quantitative proteomics and functional validation via MCT1/2 inhibition. Oncotarget. 2014;5(22):11029–37.CrossRefPubMedPubMedCentral
35.
go back to reference Liberman L, Menell JH. Breast imaging reporting and data system (bi-rads). Radiol Clin N Am. 2002;40(3):409–30 v.CrossRefPubMed Liberman L, Menell JH. Breast imaging reporting and data system (bi-rads). Radiol Clin N Am. 2002;40(3):409–30 v.CrossRefPubMed
36.
go back to reference Eberl MM, Fox CH, Edge SB, Carter CA, Mahoney MC. Bi-rads classification for management of abnormal mammograms. J Am Board Fam Med. 2006;19(2):161–4.CrossRefPubMed Eberl MM, Fox CH, Edge SB, Carter CA, Mahoney MC. Bi-rads classification for management of abnormal mammograms. J Am Board Fam Med. 2006;19(2):161–4.CrossRefPubMed
38.
go back to reference Balkwill F, Mantovani A. Inflammation and cancer: Back to Virchow? Lancet. 2001;357(9255):539–45.CrossRefPubMed Balkwill F, Mantovani A. Inflammation and cancer: Back to Virchow? Lancet. 2001;357(9255):539–45.CrossRefPubMed
42.
go back to reference Altomare DA, Testa JR. Perturbations of the AKT signaling pathway in human cancer. Oncogene. 2005;24(50):7455–64.CrossRefPubMed Altomare DA, Testa JR. Perturbations of the AKT signaling pathway in human cancer. Oncogene. 2005;24(50):7455–64.CrossRefPubMed
43.
go back to reference Tschopp O, Yang ZZ, Brodbeck D, Dummler BA, Hemmings-Mieszczak M, Watanabe T, et al. Essential role of protein kinase b gamma (PKB gamma/AKT3) in postnatal brain development but not in glucose homeostasis. Development. 2005;132(13):2943–54.CrossRefPubMed Tschopp O, Yang ZZ, Brodbeck D, Dummler BA, Hemmings-Mieszczak M, Watanabe T, et al. Essential role of protein kinase b gamma (PKB gamma/AKT3) in postnatal brain development but not in glucose homeostasis. Development. 2005;132(13):2943–54.CrossRefPubMed
44.
go back to reference Linnerth-Petrik NM, Santry LA, Petrik JJ, Wootton SK. Opposing functions of AKT isoforms in lung tumor initiation and progression. PLoS One. 2014;9(4):e94595.CrossRefPubMedPubMedCentral Linnerth-Petrik NM, Santry LA, Petrik JJ, Wootton SK. Opposing functions of AKT isoforms in lung tumor initiation and progression. PLoS One. 2014;9(4):e94595.CrossRefPubMedPubMedCentral
Metadata
Title
Mitochondrial autoimmunity and MNRR1 in breast carcinogenesis
Authors
Siddhesh Aras
Marie-Claire Maroun
Yeohan Song
Sudeshna Bandyopadhyay
Azadeh Stark
Zeng-Quan Yang
Michael P. Long
Lawrence I. Grossman
Félix Fernández-Madrid
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2019
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-019-5575-7

Other articles of this Issue 1/2019

BMC Cancer 1/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine