Skip to main content
Top
Published in: BMC Cancer 1/2019

Open Access 01-12-2019 | Melanoma | Research article

Targeting B-Raf inhibitor resistant melanoma with novel cell penetrating peptide disrupters of PDE8A – C-Raf

Authors: Connor M. Blair, Nicola M. Walsh, Bruce H. Littman, Frank W. Marcoux, George S. Baillie

Published in: BMC Cancer | Issue 1/2019

Login to get access

Abstract

Background

Recent advances in the treatment of melanoma that involve immunotherapy and B-Raf inhibition have revolutionised cancer care for this disease. However, an un-met clinical need remains in B-Raf inhibitor resistant patients where first-generation B-Raf inhibitors provide only short-term disease control. In these cases, B-Raf inhibition leads to paradoxical activation of the C-Raf – MEK – ERK signalling pathway, followed by metastasis. PDE8A has been shown to directly interact with and modulate the cAMP microdomain in the vicinity of C-Raf. This interaction promotes C-Raf activation by attenuating the PKA-mediated inhibitory phosphorylation of the kinase.

Methods

We have used a novel cell-penetrating peptide agent (PPL-008) that inhibits the PDE8A – C-Raf complex in a human malignant MM415 melanoma cell line and MM415 melanoma xenograft mouse model to investigate ERK MAP kinase signalling.

Results

We have demonstrated that the PDE8A – C-Raf complex disruptor PPL-008 increased inhibitory C-Raf-S259 phosphorylation and significantly reduced phospho-ERK signalling. We have also discovered that the ability of PPL-008 to dampen ERK signalling can be used to counter B-Raf inhibitor-driven paradoxical activation of phospho-ERK in MM415 cells treated with PLX4032 (Vemurafenib). PPL-008 treatment also significantly retarded the growth of these cells. When applied to a MM415 melanoma xenograft mouse model, PPL-008C penetrated tumour tissue and significantly reduced phospho-ERK signalling in that domain.

Conclusion

Our data suggests that the PDE8A-C-Raf complex is a promising therapeutic treatment for B-Raf inhibitor resistant melanoma.
Appendix
Available only for authorised users
Literature
2.
go back to reference Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–54.CrossRef Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–54.CrossRef
3.
go back to reference Shinozaki M, Fujimoto A, Morton DL, Hoon DSB. Incidence of BRAF oncogene mutation and clinical relevance for primary cutaneous melanomas. Clin Cancer Res. 2004;10:1753–7.CrossRef Shinozaki M, Fujimoto A, Morton DL, Hoon DSB. Incidence of BRAF oncogene mutation and clinical relevance for primary cutaneous melanomas. Clin Cancer Res. 2004;10:1753–7.CrossRef
5.
go back to reference McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EWT, Chang F, et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochimica et Biophysica Acta - Molecular Cell Research. 2007;1773(8):1263–84.CrossRef McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EWT, Chang F, et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochimica et Biophysica Acta - Molecular Cell Research. 2007;1773(8):1263–84.CrossRef
6.
go back to reference Flaherty KT, Puzanov I, Kim KB, Ribas A, McArthur GA, Sosman JA, et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med. 2010;363(9):809–19.CrossRef Flaherty KT, Puzanov I, Kim KB, Ribas A, McArthur GA, Sosman JA, et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med. 2010;363(9):809–19.CrossRef
7.
go back to reference Joseph EW, Pratilas CA, Poulikakos PI, Tadi M, Wang W, Taylor BS, et al. The RAF inhibitor PLX4032 inhibits ERK signaling and tumor cell proliferation in a V600E BRAF-selective manner. Proc Natl Acad Sci. 2010;107(33):14903–8.CrossRef Joseph EW, Pratilas CA, Poulikakos PI, Tadi M, Wang W, Taylor BS, et al. The RAF inhibitor PLX4032 inhibits ERK signaling and tumor cell proliferation in a V600E BRAF-selective manner. Proc Natl Acad Sci. 2010;107(33):14903–8.CrossRef
8.
go back to reference Domingues B, Lopes JM, Soares P, Pópulo H. Melanoma treatment in review. ImmunoTargets Ther. 2018;7:35–49.CrossRef Domingues B, Lopes JM, Soares P, Pópulo H. Melanoma treatment in review. ImmunoTargets Ther. 2018;7:35–49.CrossRef
9.
go back to reference Griffin M, Scotto D, Josephs DH, Mele S, Crescioli S, Bax HJ, et al. BRAF inhibitors : resistance and the promise of combination treatments for melanoma. Oncotarget. 2017;8(44):78174–92.CrossRef Griffin M, Scotto D, Josephs DH, Mele S, Crescioli S, Bax HJ, et al. BRAF inhibitors : resistance and the promise of combination treatments for melanoma. Oncotarget. 2017;8(44):78174–92.CrossRef
10.
go back to reference Halaban R, Zhang W, Bacchiocchi A, Cheng E, Parisi F, Ariyan S, et al. PLX4032, a selective BRAFV600E kinase inhibitor, activates the ERK pathway and enhances cell migration and proliferation of BRAFWT melanoma cells. Pigment Cell Melanoma Res. 2010;23(2):190–200.CrossRef Halaban R, Zhang W, Bacchiocchi A, Cheng E, Parisi F, Ariyan S, et al. PLX4032, a selective BRAFV600E kinase inhibitor, activates the ERK pathway and enhances cell migration and proliferation of BRAFWT melanoma cells. Pigment Cell Melanoma Res. 2010;23(2):190–200.CrossRef
11.
go back to reference Oh YT, Deng J, Yue P, Sun SY. Paradoxical activation of MEK/ERK signaling induced by B-Raf inhibition enhances DR5 expression and DR5 activation-induced apoptosis in Ras-mutant cancer cells. Sci Rep. 2016;6:26803.CrossRef Oh YT, Deng J, Yue P, Sun SY. Paradoxical activation of MEK/ERK signaling induced by B-Raf inhibition enhances DR5 expression and DR5 activation-induced apoptosis in Ras-mutant cancer cells. Sci Rep. 2016;6:26803.CrossRef
12.
go back to reference Gibney GT, Messina JL, Fedorenko IV, Sondak VK, Smalley KSM. Paradoxical oncogenesis-the long-term effects of BRAF inhibition in melanoma. Nat Rev Clin Oncol. 2013;10(7):390–9.CrossRef Gibney GT, Messina JL, Fedorenko IV, Sondak VK, Smalley KSM. Paradoxical oncogenesis-the long-term effects of BRAF inhibition in melanoma. Nat Rev Clin Oncol. 2013;10(7):390–9.CrossRef
13.
go back to reference Poulikakos PI, Zhang C, Bollag G, Shokat KM, Rosen N. RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature. 2010;464(7282):427–30.CrossRef Poulikakos PI, Zhang C, Bollag G, Shokat KM, Rosen N. RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature. 2010;464(7282):427–30.CrossRef
14.
go back to reference Heidorn SJ, Milagre C, Whittaker S, Nourry A, Niculescu-Duvas I, Dhomen N, et al. Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell. 2010;140(2):209–21.CrossRef Heidorn SJ, Milagre C, Whittaker S, Nourry A, Niculescu-Duvas I, Dhomen N, et al. Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell. 2010;140(2):209–21.CrossRef
15.
go back to reference Sanchez-Laorden B, Viros A, Girotti MR, Pedersen M, Saturno G, Zambon A, et al. BRAF inhibitors induce metastasis in RAS mutant or inhibitor-resistant melanoma cells by reactivating MEK and ERK signaling. Sci Signal. 2014;7(318). Sanchez-Laorden B, Viros A, Girotti MR, Pedersen M, Saturno G, Zambon A, et al. BRAF inhibitors induce metastasis in RAS mutant or inhibitor-resistant melanoma cells by reactivating MEK and ERK signaling. Sci Signal. 2014;7(318).
16.
go back to reference Dumaz N, Hayward R, Martin J, Ogilvie L, Hedley D, Curtin JA, et al. In melanoma, RAS mutations are accompanied by switching signaling from BRAF to CRAF and disrupted cyclic AMP signaling. Cancer Res. 2006;66(19):9483–91.CrossRef Dumaz N, Hayward R, Martin J, Ogilvie L, Hedley D, Curtin JA, et al. In melanoma, RAS mutations are accompanied by switching signaling from BRAF to CRAF and disrupted cyclic AMP signaling. Cancer Res. 2006;66(19):9483–91.CrossRef
17.
go back to reference Marquette A, André J, Bagot M, Bensussan A, Dumaz N. ERK and PDE4 cooperate to induce RAF isoform switching in melanoma. Nat Struct Mol Biol. 2011;18(5):584–91.CrossRef Marquette A, André J, Bagot M, Bensussan A, Dumaz N. ERK and PDE4 cooperate to induce RAF isoform switching in melanoma. Nat Struct Mol Biol. 2011;18(5):584–91.CrossRef
18.
go back to reference Rushworth LK, Hindley AD, O’Neill E, Kolch W. Regulation and role of Raf-1/B-Raf Heterodimerization. Mol Cell Biol. 2006;26(6):2262–72.CrossRef Rushworth LK, Hindley AD, O’Neill E, Kolch W. Regulation and role of Raf-1/B-Raf Heterodimerization. Mol Cell Biol. 2006;26(6):2262–72.CrossRef
19.
go back to reference Durrant DE, Morrison DK. Targeting the Raf kinases in human cancer: the Raf dimer dilemma. Vol. 118. Br J Cancer. 2018;118:3–8.CrossRef Durrant DE, Morrison DK. Targeting the Raf kinases in human cancer: the Raf dimer dilemma. Vol. 118. Br J Cancer. 2018;118:3–8.CrossRef
20.
go back to reference Brown KM, Day JP, Huston E, Zimmermann B, Hampel K, Christian F, et al. Phosphodiesterase-8A binds to and regulates Raf-1 kinase. Proc Natl Acad Sci. 2013;110(16):1533–42.CrossRef Brown KM, Day JP, Huston E, Zimmermann B, Hampel K, Christian F, et al. Phosphodiesterase-8A binds to and regulates Raf-1 kinase. Proc Natl Acad Sci. 2013;110(16):1533–42.CrossRef
21.
go back to reference Maurice DH. PDE8A runs interference to limit PKA inhibition of Raf-1. Proc Natl Acad Sci. 2013;110(16):6248–9.CrossRef Maurice DH. PDE8A runs interference to limit PKA inhibition of Raf-1. Proc Natl Acad Sci. 2013;110(16):6248–9.CrossRef
22.
go back to reference Min DH, Mrksich M. Peptide arrays: towards routine implementation. Curr Opin Chem Biol. 2004;8:554–8. Min DH, Mrksich M. Peptide arrays: towards routine implementation. Curr Opin Chem Biol. 2004;8:554–8.
23.
go back to reference Katz C, Levy-Beladev L, Rotem-Bamberger S, Rito T, Rüdiger SGD, Friedler A. Studying protein–protein interactions using peptide arrays. Chem Soc Rev. 2011;40(5):2131.CrossRef Katz C, Levy-Beladev L, Rotem-Bamberger S, Rito T, Rüdiger SGD, Friedler A. Studying protein–protein interactions using peptide arrays. Chem Soc Rev. 2011;40(5):2131.CrossRef
24.
go back to reference Basole CP, Nguyen RK, Lamothe K, Vang A, Clark R, Baillie GS, et al. PDE8 controls CD4+T cell motility through the PDE8A-Raf-1 kinase signaling complex. Cell Signal. 2017;40:62–72.CrossRef Basole CP, Nguyen RK, Lamothe K, Vang A, Clark R, Baillie GS, et al. PDE8 controls CD4+T cell motility through the PDE8A-Raf-1 kinase signaling complex. Cell Signal. 2017;40:62–72.CrossRef
25.
go back to reference Littman BH, Marcoux FW, Jamison JA. Efficacy of PPL-003 and the role of NFκB activation in a rat model of dry eye disease. Invest Ophthalmol Vis Sci. 2016;57(12):407. Littman BH, Marcoux FW, Jamison JA. Efficacy of PPL-003 and the role of NFκB activation in a rat model of dry eye disease. Invest Ophthalmol Vis Sci. 2016;57(12):407.
26.
go back to reference Rosenbaum JT, Littman BH, Marcoux FW, Jamison JA. Efficacy of PPL-003 and inhibition of NFκB activation in a rabbit mycobacterial antigen-induced uveitis model. Invest Ophthalmol Vis Sci. 2016;57(12):1896. Rosenbaum JT, Littman BH, Marcoux FW, Jamison JA. Efficacy of PPL-003 and inhibition of NFκB activation in a rabbit mycobacterial antigen-induced uveitis model. Invest Ophthalmol Vis Sci. 2016;57(12):1896.
27.
go back to reference Littman BH, Jamison JA, Ochoa R. Rabbit safety of topical PPL-003: a cell penetrating peptide inhibitor of NFkB for dry eye disease. Invest Ophthalmol Vis Sci. 2017;58(8):460. Littman BH, Jamison JA, Ochoa R. Rabbit safety of topical PPL-003: a cell penetrating peptide inhibitor of NFkB for dry eye disease. Invest Ophthalmol Vis Sci. 2017;58(8):460.
28.
go back to reference Anthony DF, Sin YY, Vadrevu S, Advant N, Day JP, Byrne AM, et al. β-Arrestin 1 inhibits the GTPase-activating protein function of ARHGAP21, promoting activation of RhoA following angiotensin II type 1A receptor stimulation. Mol Cell Biol. 2011;31(5):1066–75.CrossRef Anthony DF, Sin YY, Vadrevu S, Advant N, Day JP, Byrne AM, et al. β-Arrestin 1 inhibits the GTPase-activating protein function of ARHGAP21, promoting activation of RhoA following angiotensin II type 1A receptor stimulation. Mol Cell Biol. 2011;31(5):1066–75.CrossRef
29.
go back to reference Henderson DJP, Byrne A, Dulla K, Jenster G, Hoffmann R, Baillie GS, et al. The cAMP phosphodiesterase-4D7 (PDE4D7) is downregulated in androgen-independent prostate cancer cells and mediates proliferation by compartmentalising cAMP at the plasma membrane of VCaP prostate cancer cells. Br J Cancer. 2014;110(5):1278–87.CrossRef Henderson DJP, Byrne A, Dulla K, Jenster G, Hoffmann R, Baillie GS, et al. The cAMP phosphodiesterase-4D7 (PDE4D7) is downregulated in androgen-independent prostate cancer cells and mediates proliferation by compartmentalising cAMP at the plasma membrane of VCaP prostate cancer cells. Br J Cancer. 2014;110(5):1278–87.CrossRef
30.
go back to reference Sin YY, Martin TP, Wills L, Currie S, Baillie GS. Small heat shock protein 20 (Hsp20) facilitates nuclear import of protein kinase D 1 (PKD1) during cardiac hypertrophy. Cell Commun Signal. 2015;13:16.CrossRef Sin YY, Martin TP, Wills L, Currie S, Baillie GS. Small heat shock protein 20 (Hsp20) facilitates nuclear import of protein kinase D 1 (PKD1) during cardiac hypertrophy. Cell Commun Signal. 2015;13:16.CrossRef
31.
go back to reference Cameron RT, Whiteley E, Day JP, Parachikova AI, Baillie GS. Selective inhibition of phosphodiesterases 4, 5 and 9 induces HSP20 phosphorylation and attenuates amyloid beta 1–42-mediated cytotoxicity. FEBS Open Bio. 2017;7(1):64–73.CrossRef Cameron RT, Whiteley E, Day JP, Parachikova AI, Baillie GS. Selective inhibition of phosphodiesterases 4, 5 and 9 induces HSP20 phosphorylation and attenuates amyloid beta 1–42-mediated cytotoxicity. FEBS Open Bio. 2017;7(1):64–73.CrossRef
32.
go back to reference Day JP, Whiteley E, Freeley M, Long A, Malacrida B, Kiely P, et al. RAB40C regulates RACK1 stability via the ubiquitin – proteasome system. Futur Scii OA. 2018;4(7). Day JP, Whiteley E, Freeley M, Long A, Malacrida B, Kiely P, et al. RAB40C regulates RACK1 stability via the ubiquitin – proteasome system. Futur Scii OA. 2018;4(7).
33.
go back to reference Pelay-Gimeno M, Glas A, Koch O, Grossmann TN. Structure-based Design of Inhibitors of protein-protein interactions: mimicking peptide binding epitopes. Angew Chem Int Ed Engl. 2015;54:8896–927.CrossRef Pelay-Gimeno M, Glas A, Koch O, Grossmann TN. Structure-based Design of Inhibitors of protein-protein interactions: mimicking peptide binding epitopes. Angew Chem Int Ed Engl. 2015;54:8896–927.CrossRef
34.
go back to reference Zhong HJ, Lu L, Leung KH, Wong CCL, Peng C, Yan SC, Ma DL, Cai Z, David Wang HM, Leung CH. An iridium (iii)-based irreversible protein-protein interaction inhibitor of BRD4 as a potent anticancer agent. Chem Sci. 2015;6:5400–8.CrossRef Zhong HJ, Lu L, Leung KH, Wong CCL, Peng C, Yan SC, Ma DL, Cai Z, David Wang HM, Leung CH. An iridium (iii)-based irreversible protein-protein interaction inhibitor of BRD4 as a potent anticancer agent. Chem Sci. 2015;6:5400–8.CrossRef
35.
go back to reference Kurenova EV, Hunt DL, He D, Magis AT, Ostrov DA, Cance WG. Small molecule chloropyramine hydrochloride (C4) targets the binding site of focal adhesion kinase and vascular endothelial growth factor receptor 3 and suppresses breast cancer growth in vivo. J Med Chem. 2009;52:4716–24.CrossRef Kurenova EV, Hunt DL, He D, Magis AT, Ostrov DA, Cance WG. Small molecule chloropyramine hydrochloride (C4) targets the binding site of focal adhesion kinase and vascular endothelial growth factor receptor 3 and suppresses breast cancer growth in vivo. J Med Chem. 2009;52:4716–24.CrossRef
36.
go back to reference Kurenova E, Ucar D, Liao J, Yemma M, Gogate P, Bshara W, Sunar U, Seshadri M, Hochwald SN, Cance WG. A FAK scaffold inhibitor disrupts FAK and VEGFR-3 signaling and blocks melanoma growth by targeting both tumor and endothelial cells. Cell Cycle. 2014;13:2542–53.CrossRef Kurenova E, Ucar D, Liao J, Yemma M, Gogate P, Bshara W, Sunar U, Seshadri M, Hochwald SN, Cance WG. A FAK scaffold inhibitor disrupts FAK and VEGFR-3 signaling and blocks melanoma growth by targeting both tumor and endothelial cells. Cell Cycle. 2014;13:2542–53.CrossRef
37.
go back to reference Fancher AT, Hua Y, Camarco DP, Close DA, Strock CJ, Johnston PA. High-content screening campaign to identify compounds that inhibit or disrupt androgen receptor-transcriptional intermediary factor 2 protein-protein interactions for the treatment of prostate Cancer. Assay Drug Dev Technol. 2018;16:297–319.CrossRef Fancher AT, Hua Y, Camarco DP, Close DA, Strock CJ, Johnston PA. High-content screening campaign to identify compounds that inhibit or disrupt androgen receptor-transcriptional intermediary factor 2 protein-protein interactions for the treatment of prostate Cancer. Assay Drug Dev Technol. 2018;16:297–319.CrossRef
38.
go back to reference Xu S, Aguilar A, Xu T, Zheng K, Huang L, Stuckey J, Chinnaswamy K, Bernard D, Fernandez-Salas E, Liu L, Wang M, McEachern D, Przybranowski S, Foster C, Wang S. Design of the First-in-Class, highly potent irreversible inhibitor targeting the Menin-MLL protein-protein interaction. Angew Chem Int Ed Engl. 2018;57:1601–5.CrossRef Xu S, Aguilar A, Xu T, Zheng K, Huang L, Stuckey J, Chinnaswamy K, Bernard D, Fernandez-Salas E, Liu L, Wang M, McEachern D, Przybranowski S, Foster C, Wang S. Design of the First-in-Class, highly potent irreversible inhibitor targeting the Menin-MLL protein-protein interaction. Angew Chem Int Ed Engl. 2018;57:1601–5.CrossRef
39.
go back to reference Borkin D, Klossowski S, Pollock J, Miao H, Linhares BM, Kempinska K, Jin Z, Purohit T, Wen B, He M, Sun D, Cierpicki T, Grembecka J. Complexity of blocking bivalent protein-protein interactions: development of a highly potent inhibitor of the Menin-mixed-lineage leukemia interaction. J Med Chem. 2018;61:4832–50.CrossRef Borkin D, Klossowski S, Pollock J, Miao H, Linhares BM, Kempinska K, Jin Z, Purohit T, Wen B, He M, Sun D, Cierpicki T, Grembecka J. Complexity of blocking bivalent protein-protein interactions: development of a highly potent inhibitor of the Menin-mixed-lineage leukemia interaction. J Med Chem. 2018;61:4832–50.CrossRef
40.
go back to reference Sameshima T, Yamamoto T, Sano O, Sogabe S, Igaki S, Sakamoto K, Ida K, Gotou M, Imaeda Y, Sakamoto J, Miyahisa I. Discovery of an irreversible and cell-active BCL6 inhibitor selectively targeting Cys53 located at the protein-protein interaction Interface. Biochemistry. 2018;57:1369–79.CrossRef Sameshima T, Yamamoto T, Sano O, Sogabe S, Igaki S, Sakamoto K, Ida K, Gotou M, Imaeda Y, Sakamoto J, Miyahisa I. Discovery of an irreversible and cell-active BCL6 inhibitor selectively targeting Cys53 located at the protein-protein interaction Interface. Biochemistry. 2018;57:1369–79.CrossRef
41.
go back to reference Benavides-Serrato A, Lee J, Holmes B, Landon KA, Bashir T, Jung ME, Lichtenstein A, Gera J. Specific blockade of Rictor-mTOR association inhibits mTORC2 activity and is cytotoxic in glioblastoma. PLoS One. 2017;12:e0176599.CrossRef Benavides-Serrato A, Lee J, Holmes B, Landon KA, Bashir T, Jung ME, Lichtenstein A, Gera J. Specific blockade of Rictor-mTOR association inhibits mTORC2 activity and is cytotoxic in glioblastoma. PLoS One. 2017;12:e0176599.CrossRef
42.
go back to reference Clark RC, Lee SY, Searcey M, Boger DL. The isolation, total synthesis and structure elucidation of chlorofusin, a natural product inhibitor of the p53-mDM2 protein-protein interaction. Nat Prod Rep. 2009;26:465–77.CrossRef Clark RC, Lee SY, Searcey M, Boger DL. The isolation, total synthesis and structure elucidation of chlorofusin, a natural product inhibitor of the p53-mDM2 protein-protein interaction. Nat Prod Rep. 2009;26:465–77.CrossRef
43.
go back to reference Okamoto T. Molecular docking analysis of the protein-protein interaction between RelA-associated inhibitor and tumor suppressor protein p53 and its inhibitory effect on p53 action. Cancer Sci. 2008;99:615–22.CrossRef Okamoto T. Molecular docking analysis of the protein-protein interaction between RelA-associated inhibitor and tumor suppressor protein p53 and its inhibitory effect on p53 action. Cancer Sci. 2008;99:615–22.CrossRef
44.
go back to reference Rhodes CA, Dougherty PG, Cooper JK, Qian Z, Lindert S, Wang QE, Pei D. Cell-permeable bicyclic peptidyl inhibitors against NEMO-IkappaB kinase interaction directly from a combinatorial library. J Am Chem Soc. 2018;140:12102–10.CrossRef Rhodes CA, Dougherty PG, Cooper JK, Qian Z, Lindert S, Wang QE, Pei D. Cell-permeable bicyclic peptidyl inhibitors against NEMO-IkappaB kinase interaction directly from a combinatorial library. J Am Chem Soc. 2018;140:12102–10.CrossRef
45.
go back to reference Dietrich L, Rathmer B, Ewan K, Bange T, Heinrichs S, Dale TC, Schade D, Grossmann TN. Cell permeable stapled peptide inhibitor of Wnt signaling that targets beta-catenin protein-protein interactions. Cell Chem Biol. 2017;24:958–968 e955.CrossRef Dietrich L, Rathmer B, Ewan K, Bange T, Heinrichs S, Dale TC, Schade D, Grossmann TN. Cell permeable stapled peptide inhibitor of Wnt signaling that targets beta-catenin protein-protein interactions. Cell Chem Biol. 2017;24:958–968 e955.CrossRef
46.
go back to reference Jiang H, Deng R, Yang X, Shang J, Lu S, Zhao Y, Song K, Liu X, Zhang Q, Chen Y, Chinn YE, Wu G, Li J, Chen G, Yu J, Zhang J. Peptidomimetic inhibitors of APC-Asef interaction block colorectal cancer migration. Nat Chem Biol. 2017;13:994–1001.CrossRef Jiang H, Deng R, Yang X, Shang J, Lu S, Zhao Y, Song K, Liu X, Zhang Q, Chen Y, Chinn YE, Wu G, Li J, Chen G, Yu J, Zhang J. Peptidomimetic inhibitors of APC-Asef interaction block colorectal cancer migration. Nat Chem Biol. 2017;13:994–1001.CrossRef
47.
go back to reference Zhang Y, Zhang L, Hu Y, Jiang K, Li Z, Lin YZ, Wei G, Lu W. Cell-permeable NF-kappaB inhibitor-conjugated liposomes for treatment of glioma. J Control Release. 2018;289:102–13.CrossRef Zhang Y, Zhang L, Hu Y, Jiang K, Li Z, Lin YZ, Wei G, Lu W. Cell-permeable NF-kappaB inhibitor-conjugated liposomes for treatment of glioma. J Control Release. 2018;289:102–13.CrossRef
48.
go back to reference He X, Chen X, Liu L, Zhang Y, Lu Y, Zhang Y, Chen Q, Ruan C, Guo Q, Li C, Sun T, Jiang C. Sequentially triggered nanoparticles with tumor penetration and intelligent drug release for pancreatic Cancer therapy. Adv Sci (Weinh). 2018;5:1701070.CrossRef He X, Chen X, Liu L, Zhang Y, Lu Y, Zhang Y, Chen Q, Ruan C, Guo Q, Li C, Sun T, Jiang C. Sequentially triggered nanoparticles with tumor penetration and intelligent drug release for pancreatic Cancer therapy. Adv Sci (Weinh). 2018;5:1701070.CrossRef
49.
go back to reference Farkhani SM, Valizadeh A, Karami H, Mohammadi S, Sohrabi N, Badrzadeh F. Cell penetrating peptides: efficient vectors for delivery of nanoparticles, nanocarriers, therapeutic and diagnostic molecules. Peptides. 2014;57:78–94.CrossRef Farkhani SM, Valizadeh A, Karami H, Mohammadi S, Sohrabi N, Badrzadeh F. Cell penetrating peptides: efficient vectors for delivery of nanoparticles, nanocarriers, therapeutic and diagnostic molecules. Peptides. 2014;57:78–94.CrossRef
50.
go back to reference Yalla K, Elliott C, Day JP, Findlay J, Barratt S, Hughes ZA, Wilson L, Whiteley E, Popiolek M, Li Y, Dunlop J, Killick R, Adams DR, Brandon NJ, Houslay MD, Hao B, Baillie GS. FBXW7 regulates DISC1 stability via the ubiquitin-proteosome system. Mol Psychiatry. 2018;23:1278–86.CrossRef Yalla K, Elliott C, Day JP, Findlay J, Barratt S, Hughes ZA, Wilson L, Whiteley E, Popiolek M, Li Y, Dunlop J, Killick R, Adams DR, Brandon NJ, Houslay MD, Hao B, Baillie GS. FBXW7 regulates DISC1 stability via the ubiquitin-proteosome system. Mol Psychiatry. 2018;23:1278–86.CrossRef
51.
go back to reference Sin YY, Martin TP, Wills L, Currie S, Baillie GS. Small heat shock protein 20 (Hsp20) facilitates nuclear import of protein kinase D1 (PKD1) during cardiac hypertrophy. Cell Commun Signal. 2015;13:16.CrossRef Sin YY, Martin TP, Wills L, Currie S, Baillie GS. Small heat shock protein 20 (Hsp20) facilitates nuclear import of protein kinase D1 (PKD1) during cardiac hypertrophy. Cell Commun Signal. 2015;13:16.CrossRef
52.
go back to reference Martin TP, Hortigon-Vinagre MP, Findlay JE, Elliott C, Currie S, Baillie GS. Targeted disruption of the heat shock protein 20-phosphodiesterase 4D (PDE4D) interaction protects against pathological cardiac remodelling in a mouse model of hypertrophy. FEBS Open Bio. 2014;4:923–7.CrossRef Martin TP, Hortigon-Vinagre MP, Findlay JE, Elliott C, Currie S, Baillie GS. Targeted disruption of the heat shock protein 20-phosphodiesterase 4D (PDE4D) interaction protects against pathological cardiac remodelling in a mouse model of hypertrophy. FEBS Open Bio. 2014;4:923–7.CrossRef
Metadata
Title
Targeting B-Raf inhibitor resistant melanoma with novel cell penetrating peptide disrupters of PDE8A – C-Raf
Authors
Connor M. Blair
Nicola M. Walsh
Bruce H. Littman
Frank W. Marcoux
George S. Baillie
Publication date
01-12-2019
Publisher
BioMed Central
Keywords
Melanoma
Melanoma
Published in
BMC Cancer / Issue 1/2019
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-019-5489-4

Other articles of this Issue 1/2019

BMC Cancer 1/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine