Skip to main content
Top
Published in: BMC Cancer 1/2019

Open Access 01-12-2019 | Glioblastoma | Study protocol

Phase I/IIa study of concomitant radiotherapy with olaparib and temozolomide in unresectable or partially resectable glioblastoma: OLA-TMZ-RTE-01 trial protocol

Authors: Paul Lesueur, Justine Lequesne, Jean-Michel Grellard, Audrey Dugué, Elodie Coquan, Pierre-Emmanuel Brachet, Julien Geffrelot, William Kao, Evelyne Emery, David Hassanein Berro, Laurent Castera, Nicolas Goardon, Joëlle Lacroix, Marie Lange, Aurélie Capel, Alexandra Leconte, Benoit Andre, Angélique Léger, Anaïs Lelaidier, Bénédicte Clarisse, Dinu Stefan

Published in: BMC Cancer | Issue 1/2019

Login to get access

Abstract

Background

Despite multimodality treatments including neurosurgery, radiotherapy and chemotherapy, glioblastoma (GBM) prognosis remains poor. GBM is classically considered as a radioresistant tumor, because of its high local recurrence rate, inside the irradiation field. The development of new radiosensitizer is crucial to improve the patient outcomes. Pre-clinical data showed that Poly (ADP-ribose) polymerase inhibitors (PARPi) could be considered as a promising class of radiosensitizer.
The aim of this study is to evaluate Olaparib, a PARPi, as radiosensitizing agent, combined with the Stupp protocol, namely temozolomide (TMZ) and intensity modulated radiotherapy (IMRT) in first line treatment of partially or non-resected GBM.

Methods

The OLA-TMZ-RTE-01 study is a multicenter non-randomized phase I/IIa trial including unresectable or partially resectable GBM patients, from 18 to 70 years old. A two-step dose-escalation phase I design will first determine the recommended phase 2 dose (RP2D) of olaparib, delivered concomitantly with TMZ plus conventional irradiation for 6 weeks and as single agent for 4 weeks (radiotherapy period), and second, the RP2D of olaparib combined with adjuvant TMZ (maintenance period). Phase IIa will assess the 18-month overall survival (OS) of this combination. In both phase I and IIa separately considered, the progression-free survival, the objective response rate, the neurocognitive functions of patients, emotional disorders among caregivers, the survival without toxicity, degradation nor progression, the complications onset and the morphologic and functional MRI (magnetic resonance imaging) parameters will be also assessed as secondary objectives. Ancillary objectives will explore alteration of the DNA repair pathways on biopsy tumor, proton magnetic resonance spectroscopy parameters to differentiate tumor relapse and radionecrosis, and an expanded cognition evaluation. Up to 79 patients will be enrolled: 30 patients in the phase I and 49 patients in the phase IIa.

Discussion

Combining PARP inhibitors, such as olaparib, with radiotherapy and chemotherapy in GBM may improve survival outcomes, while sparing healthy tissue and preserving neurocognitive function, given the replication-dependent efficacy of olaparib, and the increased PARP expression in GBM as compared to non-neoplastic brain tissue. Ancillary studies will help to identify genetic biomarkers predictive of PARPi efficacy as radiosensitizer.

Trial registration

NCT03212742, registered June, 7, 2017. Protocol version: Version 2.2 dated from 2017/08/18.
Literature
1.
go back to reference Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol (Berl). 2016;131:803–20.CrossRef Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol (Berl). 2016;131:803–20.CrossRef
2.
go back to reference Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJB, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352:987–96.CrossRef Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJB, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352:987–96.CrossRef
3.
go back to reference Minniti G, Amelio D, Amichetti M, Salvati M, Muni R, Bozzao A, et al. Patterns of failure and comparison of different target volume delineations in patients with glioblastoma treated with conformal radiotherapy plus concomitant and adjuvant temozolomide. Radiother Oncol J Eur Soc Ther Radiol Oncol. 2010;97:377–81.CrossRef Minniti G, Amelio D, Amichetti M, Salvati M, Muni R, Bozzao A, et al. Patterns of failure and comparison of different target volume delineations in patients with glioblastoma treated with conformal radiotherapy plus concomitant and adjuvant temozolomide. Radiother Oncol J Eur Soc Ther Radiol Oncol. 2010;97:377–81.CrossRef
4.
go back to reference Liu Y, Shen Y, Sun T, Yang W. Mechanisms regulating radiosensitivity of glioma stem cells. Neoplasma. 2017. Liu Y, Shen Y, Sun T, Yang W. Mechanisms regulating radiosensitivity of glioma stem cells. Neoplasma. 2017.
5.
go back to reference Ahmed SU, Carruthers R, Gilmour L, Yildirim S, Watts C, Chalmers AJ. Selective inhibition of parallel DNA damage response pathways optimizes Radiosensitization of glioblastoma stem-like cells. Cancer Res. 2015;75:4416–28.CrossRef Ahmed SU, Carruthers R, Gilmour L, Yildirim S, Watts C, Chalmers AJ. Selective inhibition of parallel DNA damage response pathways optimizes Radiosensitization of glioblastoma stem-like cells. Cancer Res. 2015;75:4416–28.CrossRef
6.
go back to reference Laws ER, Parney IF, Huang W, Anderson F, Morris AM, Asher A, et al. Survival following surgery and prognostic factors for recently diagnosed malignant glioma: data from the glioma outcomes project. J Neurosurg. 2003;99:467–73.CrossRef Laws ER, Parney IF, Huang W, Anderson F, Morris AM, Asher A, et al. Survival following surgery and prognostic factors for recently diagnosed malignant glioma: data from the glioma outcomes project. J Neurosurg. 2003;99:467–73.CrossRef
7.
go back to reference Simpson JR, Horton J, Scott C, Curran WJ, Rubin P, Fischbach J, et al. Influence of location and extent of surgical resection on survival of patients with glioblastoma multiforme: results of three consecutive radiation therapy oncology group (RTOG) clinical trials. Int J Radiat Oncol Biol Phys. 1993;26:239–44.CrossRef Simpson JR, Horton J, Scott C, Curran WJ, Rubin P, Fischbach J, et al. Influence of location and extent of surgical resection on survival of patients with glioblastoma multiforme: results of three consecutive radiation therapy oncology group (RTOG) clinical trials. Int J Radiat Oncol Biol Phys. 1993;26:239–44.CrossRef
8.
go back to reference Lacroix M, Abi-Said D, Fourney DR, Gokaslan ZL, Shi W, DeMonte F, et al. A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg. 2001;95:190–8.CrossRef Lacroix M, Abi-Said D, Fourney DR, Gokaslan ZL, Shi W, DeMonte F, et al. A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg. 2001;95:190–8.CrossRef
9.
go back to reference Beck C, Robert I, Reina-San-Martin B, Schreiber V, Dantzer F. Poly (ADP-ribose) polymerases in double-strand break repair: focus on PARP1, PARP2 and PARP3. Exp Cell Res. 2014;329:18–25.CrossRef Beck C, Robert I, Reina-San-Martin B, Schreiber V, Dantzer F. Poly (ADP-ribose) polymerases in double-strand break repair: focus on PARP1, PARP2 and PARP3. Exp Cell Res. 2014;329:18–25.CrossRef
10.
go back to reference Plummer R, Jones C, Middleton M, Wilson R, Evans J, Olsen A, et al. Phase I study of the poly (ADP-ribose) polymerase inhibitor, AG014699, in combination with temozolomide in patients with advanced solid tumors. Clin Cancer Res Off J Am Assoc Cancer Res. 2008;14:7917–23.CrossRef Plummer R, Jones C, Middleton M, Wilson R, Evans J, Olsen A, et al. Phase I study of the poly (ADP-ribose) polymerase inhibitor, AG014699, in combination with temozolomide in patients with advanced solid tumors. Clin Cancer Res Off J Am Assoc Cancer Res. 2008;14:7917–23.CrossRef
11.
go back to reference Lesueur P, Chevalier F, Austry J-B, Waissi W, Burckel H, Noël G, et al. Poly-(ADP-ribose)-polymerase inhibitors as radiosensitizers: a systematic review of pre-clinical and clinical human studies. Oncotarget. 2017;8:69105–24.CrossRef Lesueur P, Chevalier F, Austry J-B, Waissi W, Burckel H, Noël G, et al. Poly-(ADP-ribose)-polymerase inhibitors as radiosensitizers: a systematic review of pre-clinical and clinical human studies. Oncotarget. 2017;8:69105–24.CrossRef
12.
go back to reference Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly (ADP-ribose) polymerase. Nature. 2005;434:913–7.CrossRef Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly (ADP-ribose) polymerase. Nature. 2005;434:913–7.CrossRef
13.
go back to reference Farmer H, McCabe N, Lord CJ, Tutt ANJ, Johnson DA, Richardson TB, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005;434:917–21.CrossRef Farmer H, McCabe N, Lord CJ, Tutt ANJ, Johnson DA, Richardson TB, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005;434:917–21.CrossRef
14.
go back to reference Dungey FA, Löser DA, Chalmers AJ. Replication-dependent radiosensitization of human glioma cells by inhibition of poly (ADP-ribose) polymerase: mechanisms and therapeutic potential. Int J Radiat Oncol Biol Phys. 2008;72:1188–97.CrossRef Dungey FA, Löser DA, Chalmers AJ. Replication-dependent radiosensitization of human glioma cells by inhibition of poly (ADP-ribose) polymerase: mechanisms and therapeutic potential. Int J Radiat Oncol Biol Phys. 2008;72:1188–97.CrossRef
15.
16.
go back to reference Lesueur P, Chevalier F, El-Habr EA, Junier M-P, Chneiweiss H, Castera L, et al. Radiosensitization effect of Talazoparib, a Parp inhibitor, on glioblastoma stem cells exposed to low and high linear energy transfer radiation. Sci Rep. 2018;8:3664.CrossRef Lesueur P, Chevalier F, El-Habr EA, Junier M-P, Chneiweiss H, Castera L, et al. Radiosensitization effect of Talazoparib, a Parp inhibitor, on glioblastoma stem cells exposed to low and high linear energy transfer radiation. Sci Rep. 2018;8:3664.CrossRef
17.
go back to reference Halford SER, Cruickshank G, Dunn L, Erridge S, Godfrey L, Herbert C, et al. Results of the OPARATIC trial: a phase I dose escalation study of olaparib in combination with temozolomide (TMZ) in patients with relapsed glioblastoma (GBM). J Clin Oncol. 2017;35(15_suppl):2022.CrossRef Halford SER, Cruickshank G, Dunn L, Erridge S, Godfrey L, Herbert C, et al. Results of the OPARATIC trial: a phase I dose escalation study of olaparib in combination with temozolomide (TMZ) in patients with relapsed glioblastoma (GBM). J Clin Oncol. 2017;35(15_suppl):2022.CrossRef
18.
go back to reference Chalmers AJ, Short S, Watts C, Herbert C, Morris A, Stobo J, et al. Phase I clinical trials evaluating olaparib in combination with radiotherapy (RT) and/or temozolomide (TMZ) in glioblastoma patients: results of OPARATIC and PARADIGM phase I and early results of PARADIGM-2. J Clin Oncol. 2018;36(15_suppl):2018.CrossRef Chalmers AJ, Short S, Watts C, Herbert C, Morris A, Stobo J, et al. Phase I clinical trials evaluating olaparib in combination with radiotherapy (RT) and/or temozolomide (TMZ) in glioblastoma patients: results of OPARATIC and PARADIGM phase I and early results of PARADIGM-2. J Clin Oncol. 2018;36(15_suppl):2018.CrossRef
19.
go back to reference Case LD, Morgan TM. Design of Phase II cancer trials evaluating survival probabilities. BMC Med Res Methodol. 2003;3:6.CrossRef Case LD, Morgan TM. Design of Phase II cancer trials evaluating survival probabilities. BMC Med Res Methodol. 2003;3:6.CrossRef
20.
go back to reference Stupp R, Dietrich P-Y, Ostermann Kraljevic S, Pica A, Maillard I, Maeder P, et al. Promising survival for patients with newly diagnosed glioblastoma multiforme treated with concomitant radiation plus temozolomide followed by adjuvant temozolomide. J Clin Oncol Off J Am Soc Clin Oncol. 2002;20:1375–82.CrossRef Stupp R, Dietrich P-Y, Ostermann Kraljevic S, Pica A, Maillard I, Maeder P, et al. Promising survival for patients with newly diagnosed glioblastoma multiforme treated with concomitant radiation plus temozolomide followed by adjuvant temozolomide. J Clin Oncol Off J Am Soc Clin Oncol. 2002;20:1375–82.CrossRef
21.
go back to reference Huang B, Kuan PF. Time-to-event continual reassessment method incorporating treatment cycle information with application to an oncology phase I trial. Biom J Biom Z. 2014;56:933–46.CrossRef Huang B, Kuan PF. Time-to-event continual reassessment method incorporating treatment cycle information with application to an oncology phase I trial. Biom J Biom Z. 2014;56:933–46.CrossRef
22.
go back to reference Wages NA, Conaway MR, O’Quigley J. Using the time-to-event continual reassessment method in the presence of partial orders. Stat Med. 2013;32:131–41.CrossRef Wages NA, Conaway MR, O’Quigley J. Using the time-to-event continual reassessment method in the presence of partial orders. Stat Med. 2013;32:131–41.CrossRef
23.
go back to reference Wen PY, Macdonald DR, Reardon DA, Cloughesy TF, Sorensen AG, Galanis E, et al. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol Off J Am Soc Clin Oncol. 2010;28:1963–72.CrossRef Wen PY, Macdonald DR, Reardon DA, Cloughesy TF, Sorensen AG, Galanis E, et al. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol Off J Am Soc Clin Oncol. 2010;28:1963–72.CrossRef
Metadata
Title
Phase I/IIa study of concomitant radiotherapy with olaparib and temozolomide in unresectable or partially resectable glioblastoma: OLA-TMZ-RTE-01 trial protocol
Authors
Paul Lesueur
Justine Lequesne
Jean-Michel Grellard
Audrey Dugué
Elodie Coquan
Pierre-Emmanuel Brachet
Julien Geffrelot
William Kao
Evelyne Emery
David Hassanein Berro
Laurent Castera
Nicolas Goardon
Joëlle Lacroix
Marie Lange
Aurélie Capel
Alexandra Leconte
Benoit Andre
Angélique Léger
Anaïs Lelaidier
Bénédicte Clarisse
Dinu Stefan
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2019
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-019-5413-y

Other articles of this Issue 1/2019

BMC Cancer 1/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine