Skip to main content
Top
Published in: BMC Cancer 1/2019

Open Access 01-12-2019 | Thyroid Cancer | Research article

Safety and antitumor activity of the anti–PD-1 antibody pembrolizumab in patients with advanced, PD-L1–positive papillary or follicular thyroid cancer

Authors: Janice M. Mehnert, Andrea Varga, Marcia S. Brose, Rahul R. Aggarwal, Chia-Chi Lin, Amy Prawira, Filippo de Braud, Kenji Tamura, Toshihiko Doi, Sarina A. Piha-Paul, Jill Gilbert, Sanatan Saraf, Pradeep Thanigaimani, Jonathan D. Cheng, Bhumsuk Keam

Published in: BMC Cancer | Issue 1/2019

Login to get access

Abstract

Background

Treatment options for advanced thyroid cancer refractory to standard therapies are limited. The safety and efficacy of pembrolizumab were evaluated in patients with advanced differentiated thyroid cancer expressing programmed death ligand 1 (PD-L1).

Methods

Patients with advanced thyroid cancer were enrolled in the nonrandomized, phase Ib KEYNOTE-028 trial conducted to evaluate safety and antitumor activity of the anti–programmed death 1 (PD-1) antibody pembrolizumab in advanced solid tumors. Key eligibility criteria were advanced papillary or follicular thyroid cancer, failure of standard therapy, and PD-L1 expression in tumor or stroma cells (assessed by immunohistochemistry). Pembrolizumab 10 mg/kg was administered every 2 weeks up to 24 months or until confirmed progression or intolerable toxicity. The primary endpoint was objective response rate (ORR) per Response Evaluation Criteria in Solid Tumors, version 1.1.

Results

Twenty-two patients were enrolled: median age was 61 years; 59% were women; and 68% had papillary carcinoma. Median follow-up was 31 months (range, 7–34 months). Treatment-related adverse events were observed in 18 (82%) patients; those occurring in ≥15% of patients were diarrhea (n = 7) and fatigue (n = 4). One grade ≥ 3 treatment-related adverse event occurred (colitis, grade 3); no treatment-related discontinuations or deaths occurred. Two patients had confirmed partial response, for an ORR of 9% (95% confidence interval [CI], 1–29%); response duration was 8 and 20 months. Median progression-free survival was 7 months (95% CI, 2–14 months); median overall survival was not reached (95% CI, 22 months to not reached).

Conclusions

Results of this phase Ib proof-of-concept study suggest that pembrolizumab has a manageable safety profile and demonstrate evidence of antitumor activity in advanced differentiated thyroid cancer in a minority of patients treated. Further analyses are necessary to confirm these findings.

Trial registration

Clinicaltrials.​gov identifier: NCT02054806. Registered 4 February 2014.
Appendix
Available only for authorised users
Literature
1.
go back to reference Pacini F, Castagna MG, Brilli L, Pentheroudakis G. Thyroid cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2012;23(Suppl 7):vii110–9.CrossRef Pacini F, Castagna MG, Brilli L, Pentheroudakis G. Thyroid cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2012;23(Suppl 7):vii110–9.CrossRef
2.
go back to reference National Cancer Institute: SEER Stat Fact Sheets: Thyroid Cancer. In.; 2016. National Cancer Institute: SEER Stat Fact Sheets: Thyroid Cancer. In.; 2016.
3.
go back to reference Chowdhury S, Veyhl J, Jessa F, Polyakova O, Alenzi A, MacMillan C, Ralhan R, Walfish PG. Programmed death-ligand 1 overexpression is a prognostic marker for aggressive papillary thyroid cancer and its variants. Oncotarget. 2016;7(22):32318–28.CrossRef Chowdhury S, Veyhl J, Jessa F, Polyakova O, Alenzi A, MacMillan C, Ralhan R, Walfish PG. Programmed death-ligand 1 overexpression is a prognostic marker for aggressive papillary thyroid cancer and its variants. Oncotarget. 2016;7(22):32318–28.CrossRef
4.
go back to reference National Comprehensive Cancer Network I: NCCN clinical practice guidelines in oncology - thyroid carcinoma v1.2016. In. Edited by 1.2016; 2016. National Comprehensive Cancer Network I: NCCN clinical practice guidelines in oncology - thyroid carcinoma v1.2016. In. Edited by 1.2016; 2016.
5.
go back to reference Nguyen QT, Lee EJ, Huang MG, Park YI, Khullar A, Plodkowski RA. Diagnosis and treatment of patients with thyroid cancer. Am Health Drug Benefits. 2015;8(1):30–40.PubMedPubMedCentral Nguyen QT, Lee EJ, Huang MG, Park YI, Khullar A, Plodkowski RA. Diagnosis and treatment of patients with thyroid cancer. Am Health Drug Benefits. 2015;8(1):30–40.PubMedPubMedCentral
6.
go back to reference NEXAVAR (sorafenib) tablets, oral. Whippany: Bayer Healthcare Pharmaceuticals Inc; 2014. NEXAVAR (sorafenib) tablets, oral. Whippany: Bayer Healthcare Pharmaceuticals Inc; 2014.
7.
go back to reference Nexavar 200mg film-coated tablets. Berlin: Bayer AG; 2013. Nexavar 200mg film-coated tablets. Berlin: Bayer AG; 2013.
8.
go back to reference LENVIMA® (lenvatinib) capsules, for oral use. Woodcliff Lake: Eisai, Inc.; 2016. LENVIMA® (lenvatinib) capsules, for oral use. Woodcliff Lake: Eisai, Inc.; 2016.
9.
go back to reference LENVIMA 4 mg hard capsules LENVIMA 10 mg hard capsules. Hatfield: Esai Europe Limited; 2016. LENVIMA 4 mg hard capsules LENVIMA 10 mg hard capsules. Hatfield: Esai Europe Limited; 2016.
10.
go back to reference Brose MS, Nutting CM, Jarzab B, Elisei R, Siena S, Bastholt L, de la Fouchardiere C, Pacini F, Paschke R, Shong YK, et al. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial. Lancet. 2014;384(9940):319–28.CrossRef Brose MS, Nutting CM, Jarzab B, Elisei R, Siena S, Bastholt L, de la Fouchardiere C, Pacini F, Paschke R, Shong YK, et al. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial. Lancet. 2014;384(9940):319–28.CrossRef
11.
go back to reference Schlumberger M, Tahara M, Wirth LJ, Robinson B, Brose MS, Elisei R, Habra MA, Newbold K, Shah MH, Hoff AO, et al. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N Engl J Med. 2015;372(7):621–30.CrossRef Schlumberger M, Tahara M, Wirth LJ, Robinson B, Brose MS, Elisei R, Habra MA, Newbold K, Shah MH, Hoff AO, et al. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N Engl J Med. 2015;372(7):621–30.CrossRef
12.
go back to reference Antonelli A, Ferrari SM, Fallahi P. Current and future immunotherapies for thyroid cancer. Expert Rev Anticancer Ther. 2018;18(2):149–59.CrossRef Antonelli A, Ferrari SM, Fallahi P. Current and future immunotherapies for thyroid cancer. Expert Rev Anticancer Ther. 2018;18(2):149–59.CrossRef
13.
go back to reference Cavallo F, De GC, Nanni P, Forni G, Lollini PL. 2011: the immune hallmarks of cancer. Cancer Immunol Immunother. 2011;60(3):319–26.CrossRef Cavallo F, De GC, Nanni P, Forni G, Lollini PL. 2011: the immune hallmarks of cancer. Cancer Immunol Immunother. 2011;60(3):319–26.CrossRef
14.
15.
go back to reference Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nature Reviews - Cancer. 2012;12(4):252–64.CrossRef Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nature Reviews - Cancer. 2012;12(4):252–64.CrossRef
16.
go back to reference Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci U S A. 2002;99(19):12293–7.CrossRef Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci U S A. 2002;99(19):12293–7.CrossRef
17.
go back to reference Cunha LL, Marcello MA, Morari EC, Nonogaki S, Conte FF, Gerhard R, Soares FA, Vassallo J, Ward LS. Differentiated thyroid carcinomas may elude the immune system by B7H1 upregulation. Endocr Relat Cancer. 2013;20(1):103–10.CrossRef Cunha LL, Marcello MA, Morari EC, Nonogaki S, Conte FF, Gerhard R, Soares FA, Vassallo J, Ward LS. Differentiated thyroid carcinomas may elude the immune system by B7H1 upregulation. Endocr Relat Cancer. 2013;20(1):103–10.CrossRef
18.
go back to reference Bastman JJ, Serracino HS, Zhu Y, Koenig MR, Mateescu V, Sams SB, Davies KD, Raeburn CD, McIntyre RC Jr, Haugen BR, et al. Tumor-infiltrating T cells and the PD-1 checkpoint pathway in advanced differentiated and anaplastic thyroid Cancer. J Clin Endocrinol Metab. 2016;101(7):2863–73.CrossRef Bastman JJ, Serracino HS, Zhu Y, Koenig MR, Mateescu V, Sams SB, Davies KD, Raeburn CD, McIntyre RC Jr, Haugen BR, et al. Tumor-infiltrating T cells and the PD-1 checkpoint pathway in advanced differentiated and anaplastic thyroid Cancer. J Clin Endocrinol Metab. 2016;101(7):2863–73.CrossRef
19.
go back to reference Seiwert TY, Burtness B, Mehra R, Weiss J, Berger R, Eder JP, Heath K, McClanahan T, Lunceford J, Gause C, et al. Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): an open-label, multicentre, phase 1b trial. Lancet Oncol. 2016;17(7):956–65.CrossRef Seiwert TY, Burtness B, Mehra R, Weiss J, Berger R, Eder JP, Heath K, McClanahan T, Lunceford J, Gause C, et al. Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): an open-label, multicentre, phase 1b trial. Lancet Oncol. 2016;17(7):956–65.CrossRef
20.
go back to reference Chow LQ, Haddad R, Gupta S, Mahipal A, Mehra R, Tahara M, Berger R, Eder JP, Burtness B, Lee SH, et al. Antitumor activity of pembrolizumab in biomarker-unselected patients with recurrent and/or metastatic head and neck squamous cell carcinoma: results from the phase Ib KEYNOTE-012 expansion cohort. J Clin Oncol. 2016;34(32):3838–45.CrossRef Chow LQ, Haddad R, Gupta S, Mahipal A, Mehra R, Tahara M, Berger R, Eder JP, Burtness B, Lee SH, et al. Antitumor activity of pembrolizumab in biomarker-unselected patients with recurrent and/or metastatic head and neck squamous cell carcinoma: results from the phase Ib KEYNOTE-012 expansion cohort. J Clin Oncol. 2016;34(32):3838–45.CrossRef
21.
go back to reference Merck Sharp & Dohme Corp. KEYTRUDA® (pembrolizumab) injection, for intravenous use. Whitehouse Station; 2018. Merck Sharp & Dohme Corp. KEYTRUDA® (pembrolizumab) injection, for intravenous use. Whitehouse Station; 2018.
22.
go back to reference Dolled-Filhart M, Locke D, Murphy T, Lynch F, Yearley JH, Frisman D, Pierce R, Weiner R, Wu D, Emancipator K. Development of a prototype immunohistochemistry assay to measure programmed death ligand-1 expression in tumor tissue. Arch Pathol Lab Med. 2016;140(11):1259–66.CrossRef Dolled-Filhart M, Locke D, Murphy T, Lynch F, Yearley JH, Frisman D, Pierce R, Weiner R, Wu D, Emancipator K. Development of a prototype immunohistochemistry assay to measure programmed death ligand-1 expression in tumor tissue. Arch Pathol Lab Med. 2016;140(11):1259–66.CrossRef
23.
go back to reference Antonelli A, Fallahi P, Ferrari SM, Carpi A, Berti P, Materazzi G, Minuto M, Guastalli M, Miccoli P. Dedifferentiated thyroid cancer: a therapeutic challenge. Biomed Pharmacother. 2008;62(8):559–63.CrossRef Antonelli A, Fallahi P, Ferrari SM, Carpi A, Berti P, Materazzi G, Minuto M, Guastalli M, Miccoli P. Dedifferentiated thyroid cancer: a therapeutic challenge. Biomed Pharmacother. 2008;62(8):559–63.CrossRef
Metadata
Title
Safety and antitumor activity of the anti–PD-1 antibody pembrolizumab in patients with advanced, PD-L1–positive papillary or follicular thyroid cancer
Authors
Janice M. Mehnert
Andrea Varga
Marcia S. Brose
Rahul R. Aggarwal
Chia-Chi Lin
Amy Prawira
Filippo de Braud
Kenji Tamura
Toshihiko Doi
Sarina A. Piha-Paul
Jill Gilbert
Sanatan Saraf
Pradeep Thanigaimani
Jonathan D. Cheng
Bhumsuk Keam
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2019
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-019-5380-3

Other articles of this Issue 1/2019

BMC Cancer 1/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine