Skip to main content
Top
Published in: BMC Cancer 1/2019

Open Access 01-12-2019 | Breast Cancer | Research article

On the use of flexible excess hazard regression models for describing long-term breast cancer survival: a case-study using population-based cancer registry data

Authors: R. Schaffar, A. Belot, B. Rachet, L. Woods

Published in: BMC Cancer | Issue 1/2019

Login to get access

Abstract

Background

Breast cancer prognosis has dramatically improved over 40 years. There is, however, no proof of population ‘cure’. This research aimed to examine the pattern of long-term excess mortality due to breast cancer and evaluate its determinants in the context of cancer registry data.

Methods

We used data from the Geneva Cancer Registry to identify women younger than 75 years diagnosed with invasive, localised and operated breast cancer between 1995 and 2002. Flexible modelling of excess mortality hazard, including time-dependent (TD) regression parameters, was used to estimate mortality related to breast cancer. We derived a single “final” model using a backward selection procedure and evaluated its stability through sensitivity analyses using a bootstrap technique.

Results

We analysed data from 1574 breast cancer women including 351 deaths (22.3%). The model building strategy retained age at diagnosis (TD), tumour size and grade (TD), chemotherapy and hormonal treatment (TD) as prognostic factors, while the sensitivity analysis on bootstrap samples identified nodes involvement and hormone receptors (TD) as additional long-term prognostic factors but did not identify chemotherapy and hormonal treatment as important prognostic factors.

Conclusions

Two main issues were observed when describing the determinants of long-term survival. First, the modelling strategy presented a lack of robustness, probably due to the limited number of events observed in our study. The second was the misspecification of the model, probably due to confounding by indication. Our results highlight the need for more detailed data and the use of causal inference methods.
Literature
1.
go back to reference Gondos A, Bray F, Hakulinen T, Brenner H, EUNICE survival working group. Trends in cancer survival in 11 European populations from 1990 to 2009: a model-based analysis. Ann Oncol Off J Eur Soc Med Oncol. 2009;20(3):564–73.CrossRef Gondos A, Bray F, Hakulinen T, Brenner H, EUNICE survival working group. Trends in cancer survival in 11 European populations from 1990 to 2009: a model-based analysis. Ann Oncol Off J Eur Soc Med Oncol. 2009;20(3):564–73.CrossRef
2.
go back to reference Gondos A, et al. Recent trends in cancer survival across Europe between 2000 and 2004: a model-based period analysis from 12 cancer registries. Eur J Cancer Oxf Engl 1990. 2008;44(10):1463–75. Gondos A, et al. Recent trends in cancer survival across Europe between 2000 and 2004: a model-based period analysis from 12 cancer registries. Eur J Cancer Oxf Engl 1990. 2008;44(10):1463–75.
3.
go back to reference Sant M, Francisci S, Capocaccia R, Verdecchia A, Allemani C, Berrino F. Time trends of breast cancer survival in Europe in relation to incidence and mortality. Int J Cancer. 2006;119(10):2417–22.CrossRef Sant M, Francisci S, Capocaccia R, Verdecchia A, Allemani C, Berrino F. Time trends of breast cancer survival in Europe in relation to incidence and mortality. Int J Cancer. 2006;119(10):2417–22.CrossRef
4.
go back to reference Woods LM, Rachet B, Lambert PC, Coleman MP. ‘Cure’ from breast cancer among two populations of women followed for 23 years after diagnosis. Ann Oncol. Aug. 2009;20(8):1331–6.CrossRef Woods LM, Rachet B, Lambert PC, Coleman MP. ‘Cure’ from breast cancer among two populations of women followed for 23 years after diagnosis. Ann Oncol. Aug. 2009;20(8):1331–6.CrossRef
5.
go back to reference Brenner H, Hakulinen T. Are patients diagnosed with breast cancer before age 50 years ever cured? J Clin Oncol Off J Am Soc Clin Oncol. 2004;22(3):432–8.CrossRef Brenner H, Hakulinen T. Are patients diagnosed with breast cancer before age 50 years ever cured? J Clin Oncol Off J Am Soc Clin Oncol. 2004;22(3):432–8.CrossRef
6.
go back to reference Woods LM, Morris M, Rachet B. No ‘cure’ within 12 years of diagnosis among breast cancer patients who are diagnosed via mammographic screening: women diagnosed in the west midlands region of England 1989–2011. Ann Oncol. 2016;27(11):2025–31.CrossRef Woods LM, Morris M, Rachet B. No ‘cure’ within 12 years of diagnosis among breast cancer patients who are diagnosed via mammographic screening: women diagnosed in the west midlands region of England 1989–2011. Ann Oncol. 2016;27(11):2025–31.CrossRef
7.
go back to reference Bossard N, et al. Survival of cancer patients in France: a population-based study from the Association of the French Cancer Registries (FRANCIM). Eur. J. Cancer Oxf. Engl. 1990. 2007;43(1):149–60. Bossard N, et al. Survival of cancer patients in France: a population-based study from the Association of the French Cancer Registries (FRANCIM). Eur. J. Cancer Oxf. Engl. 1990. 2007;43(1):149–60.
8.
go back to reference Crocetti E, De Lisi V, Gafà L, Sechi O, Mangone L. Net survival: comparison between relative and cause-specific survival estimates. Epidemiol Prev. 2001;25(3 Suppl):32–6.PubMed Crocetti E, De Lisi V, Gafà L, Sechi O, Mangone L. Net survival: comparison between relative and cause-specific survival estimates. Epidemiol Prev. 2001;25(3 Suppl):32–6.PubMed
9.
go back to reference Uhry Z, Bossard N, Remontet L, Iwaz J, Roche L. New insights into survival trend analyses in cancer population-based studies: the SUDCAN methodology. Eur J Cancer Prev. 2017;26:S9–15. Uhry Z, Bossard N, Remontet L, Iwaz J, Roche L. New insights into survival trend analyses in cancer population-based studies: the SUDCAN methodology. Eur J Cancer Prev. 2017;26:S9–15.
10.
go back to reference Pohar Perme M, Estève J, Rachet B. Analysing population-based cancer survival - settling the controversies. BMC Cancer. 2016;16(1):933.CrossRef Pohar Perme M, Estève J, Rachet B. Analysing population-based cancer survival - settling the controversies. BMC Cancer. 2016;16(1):933.CrossRef
11.
go back to reference Allemani C, et al. Global surveillance of cancer survival 1995-2009: analysis of individual data for 25,676,887 patients from 279 population-based registries in 67 countries (CONCORD-2). Lancet Lond Engl. 2015;385(9972):977–1010.CrossRef Allemani C, et al. Global surveillance of cancer survival 1995-2009: analysis of individual data for 25,676,887 patients from 279 population-based registries in 67 countries (CONCORD-2). Lancet Lond Engl. 2015;385(9972):977–1010.CrossRef
12.
go back to reference Soerjomataram I, Louwman MWJ, Ribot JG, Roukema JA, Coebergh JWW. An overview of prognostic factors for long-term survivors of breast cancer. Breast Cancer Res Treat. 2008;107(3):309–30.CrossRef Soerjomataram I, Louwman MWJ, Ribot JG, Roukema JA, Coebergh JWW. An overview of prognostic factors for long-term survivors of breast cancer. Breast Cancer Res Treat. 2008;107(3):309–30.CrossRef
13.
go back to reference Jatoi I, et al. Time-varying effects of breast Cancer adjuvant systemic therapy. J Natl Cancer Inst. 2015;108(1):djv304.CrossRef Jatoi I, et al. Time-varying effects of breast Cancer adjuvant systemic therapy. J Natl Cancer Inst. 2015;108(1):djv304.CrossRef
14.
go back to reference Jatoi I, Anderson WF, Jeong J-H, Redmond CK. Breast cancer adjuvant therapy: time to consider its time-dependent effects. J Clin Oncol Off J Am Soc Clin Oncol. 2011;29(17):2301–4.CrossRef Jatoi I, Anderson WF, Jeong J-H, Redmond CK. Breast cancer adjuvant therapy: time to consider its time-dependent effects. J Clin Oncol Off J Am Soc Clin Oncol. 2011;29(17):2301–4.CrossRef
15.
go back to reference Bodai BI, Tuso P. Breast cancer survivorship: a comprehensive review of long-term medical issues and lifestyle recommendations. Perm J. 2015;19(2):48–79. Bodai BI, Tuso P. Breast cancer survivorship: a comprehensive review of long-term medical issues and lifestyle recommendations. Perm J. 2015;19(2):48–79.
16.
go back to reference Cluze C, et al. Analysis of the effect of age on the prognosis of breast cancer. Breast Cancer Res Treat. 2009;117(1):121–9.CrossRef Cluze C, et al. Analysis of the effect of age on the prognosis of breast cancer. Breast Cancer Res Treat. 2009;117(1):121–9.CrossRef
17.
go back to reference Andersen PK, Vaeth M. Simple parametric and nonparametric models for excess and relative mortality. Biometrics. 1989;45(2):523–35.CrossRef Andersen PK, Vaeth M. Simple parametric and nonparametric models for excess and relative mortality. Biometrics. 1989;45(2):523–35.CrossRef
18.
go back to reference Estève J, Benhamou E, Croasdale M, Raymond L. Relative survival and the estimation of net survival: elements for further discussion. Stat Med. 1990;9(5):529–38.CrossRef Estève J, Benhamou E, Croasdale M, Raymond L. Relative survival and the estimation of net survival: elements for further discussion. Stat Med. 1990;9(5):529–38.CrossRef
19.
go back to reference Charvat H, et al. A multilevel excess hazard model to estimate net survival on hierarchical data allowing for non-linear and non-proportional effects of covariates. Stat Med. 2016;35(18):3066–84.CrossRef Charvat H, et al. A multilevel excess hazard model to estimate net survival on hierarchical data allowing for non-linear and non-proportional effects of covariates. Stat Med. 2016;35(18):3066–84.CrossRef
20.
go back to reference Remontet L, Bossard N, Belot A, Estève J, French network of cancer registries FRANCIM. An overall strategy based on regression models to estimate relative survival and model the effects of prognostic factors in cancer survival studies. Stat Med. 2007;26(10):2214–28.CrossRef Remontet L, Bossard N, Belot A, Estève J, French network of cancer registries FRANCIM. An overall strategy based on regression models to estimate relative survival and model the effects of prognostic factors in cancer survival studies. Stat Med. 2007;26(10):2214–28.CrossRef
21.
go back to reference R Development Core Team, R. A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2009. R Development Core Team, R. A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2009.
22.
go back to reference Wynant W, Abrahamowicz M. Impact of the model-building strategy on inference about nonlinear and time-dependent covariate effects in survival analysis. Stat Med. 2014;33(19):3318–37.CrossRef Wynant W, Abrahamowicz M. Impact of the model-building strategy on inference about nonlinear and time-dependent covariate effects in survival analysis. Stat Med. 2014;33(19):3318–37.CrossRef
23.
go back to reference Royston P, Sauerbrei W. Multivariable model-building: a pragmatic approach to regression analysis based on fractional polynomials for modelling continuous variables. Chichester, England. Hoboken, NJ: John Wiley; 2008.CrossRef Royston P, Sauerbrei W. Multivariable model-building: a pragmatic approach to regression analysis based on fractional polynomials for modelling continuous variables. Chichester, England. Hoboken, NJ: John Wiley; 2008.CrossRef
24.
go back to reference Marshall A, Altman DG, Royston P, Holder RL. Comparison of techniques for handling missing covariate data within prognostic modelling studies: a simulation study. BMC Med Res Methodol. 2010;10:7.CrossRef Marshall A, Altman DG, Royston P, Holder RL. Comparison of techniques for handling missing covariate data within prognostic modelling studies: a simulation study. BMC Med Res Methodol. 2010;10:7.CrossRef
25.
go back to reference Concato J, Peduzzi P, Holford TR, Feinstein AR. Importance of events per independent variable in proportional hazards analysis. I. Background, goals, and general strategy. J Clin Epidemiol. 1995;48(12):1495–501.CrossRef Concato J, Peduzzi P, Holford TR, Feinstein AR. Importance of events per independent variable in proportional hazards analysis. I. Background, goals, and general strategy. J Clin Epidemiol. 1995;48(12):1495–501.CrossRef
26.
go back to reference Peduzzi P, Concato J, Feinstein AR, Holford TR. Importance of events per independent variable in proportional hazards regression analysis. II. Accuracy and precision of regression estimates. J Clin Epidemiol. 1995;48(12):1503–10.CrossRef Peduzzi P, Concato J, Feinstein AR, Holford TR. Importance of events per independent variable in proportional hazards regression analysis. II. Accuracy and precision of regression estimates. J Clin Epidemiol. 1995;48(12):1503–10.CrossRef
27.
go back to reference Hernán MA, Robins JM. Using big data to emulate a target trial when a randomized trial is not available: table 1. Am J Epidemiol. 2016;183(8):758–64.CrossRef Hernán MA, Robins JM. Using big data to emulate a target trial when a randomized trial is not available: table 1. Am J Epidemiol. 2016;183(8):758–64.CrossRef
28.
go back to reference Splawa-Neyman J, Dabrowska DM, Speed TP. On the application of probability theory to agricultural experiments. Essay on principles. Section 9. Stat Sci. 1990;5(4):465–72.CrossRef Splawa-Neyman J, Dabrowska DM, Speed TP. On the application of probability theory to agricultural experiments. Essay on principles. Section 9. Stat Sci. 1990;5(4):465–72.CrossRef
29.
30.
go back to reference Mao H, Li L, Yang W, Shen Y. On the propensity score weighting analysis with survival outcome: Estimands, estimation, and inference. Stat Med. 2018;37(26):3745–63. Mao H, Li L, Yang W, Shen Y. On the propensity score weighting analysis with survival outcome: Estimands, estimation, and inference. Stat Med. 2018;37(26):3745–63.
31.
go back to reference Austin PC. The use of propensity score methods with survival or time-to-event outcomes: reporting measures of effect similar to those used in randomized experiments: propensity scores and survival analysis. Stat Med. 2014;33(7):1242–58.CrossRef Austin PC. The use of propensity score methods with survival or time-to-event outcomes: reporting measures of effect similar to those used in randomized experiments: propensity scores and survival analysis. Stat Med. 2014;33(7):1242–58.CrossRef
32.
go back to reference Keil AP, Edwards JK, Richardson DB, Naimi AI, Cole SR. The parametric g-formula for time-to-event data: intuition and a worked example. Epidemiology. 2014;25(6):889–97.CrossRef Keil AP, Edwards JK, Richardson DB, Naimi AI, Cole SR. The parametric g-formula for time-to-event data: intuition and a worked example. Epidemiology. 2014;25(6):889–97.CrossRef
33.
go back to reference Newsome SJ, Keogh RH, Daniel RM. Estimating long-term treatment effects in observational data: a comparison of the performance of different methods under real-world uncertainty. Stat Med. 2018;37(15):2367–90.CrossRef Newsome SJ, Keogh RH, Daniel RM. Estimating long-term treatment effects in observational data: a comparison of the performance of different methods under real-world uncertainty. Stat Med. 2018;37(15):2367–90.CrossRef
34.
go back to reference Vansteelandt S, Joffe M. Structural nested models and G-estimation: the partially realized promise. Stat Sci. 2014;29(4):707–31.CrossRef Vansteelandt S, Joffe M. Structural nested models and G-estimation: the partially realized promise. Stat Sci. 2014;29(4):707–31.CrossRef
35.
go back to reference van der Laan MJ, Rose S. Targeted learning: causal inference for observational and experimental data. New York: Springer; 2011.CrossRef van der Laan MJ, Rose S. Targeted learning: causal inference for observational and experimental data. New York: Springer; 2011.CrossRef
36.
go back to reference Cheng Y-J, Nie X-Y, Ji C-C, Lin X-X, Liu L-J, Chen X-M, et al. Long-Term Cardiovascular Risk After Radiotherapy in Women With Breast Cancer. J Am Heart Assoc. 2017;6(5). Cheng Y-J, Nie X-Y, Ji C-C, Lin X-X, Liu L-J, Chen X-M, et al. Long-Term Cardiovascular Risk After Radiotherapy in Women With Breast Cancer. J Am Heart Assoc. 2017;6(5).
37.
go back to reference Boerman LM, et al. Long-term outcome of cardiac function in a population-based cohort of breast cancer survivors: A cross-sectional study. Eur J Cancer Oxf Engl 1990. 2017;81:56–65. Boerman LM, et al. Long-term outcome of cardiac function in a population-based cohort of breast cancer survivors: A cross-sectional study. Eur J Cancer Oxf Engl 1990. 2017;81:56–65.
38.
go back to reference Rygiel K. Cardiotoxic effects of radiotherapy and strategies to reduce them in patients with breast cancer: an overview. J Cancer Res Ther. Jun. 2017;13(2):186–92.CrossRef Rygiel K. Cardiotoxic effects of radiotherapy and strategies to reduce them in patients with breast cancer: an overview. J Cancer Res Ther. Jun. 2017;13(2):186–92.CrossRef
Metadata
Title
On the use of flexible excess hazard regression models for describing long-term breast cancer survival: a case-study using population-based cancer registry data
Authors
R. Schaffar
A. Belot
B. Rachet
L. Woods
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2019
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-019-5304-2

Other articles of this Issue 1/2019

BMC Cancer 1/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine