Skip to main content
Top
Published in: BMC Cancer 1/2019

Open Access 01-12-2019 | Ovarian Cancer | Research article

Regulation of human chorionic gonadotropin beta subunit expression in ovarian cancer

Authors: Aleksandra Śliwa, Marta Kubiczak, Anna Szczerba, Grzegorz Walkowiak, Ewa Nowak-Markwitz, Beata Burczyńska, Stephen Butler, Ray Iles, Piotr Białas, Anna Jankowska

Published in: BMC Cancer | Issue 1/2019

Login to get access

Abstract

Purpose

Expression of human chorionic gonadotropin beta subunit by cancers is extensively documented, yet regulation of the multiple genes that can code for this protein is poorly understood. The aim of the study was to examine the mechanisms regulating CGB gene expression in ovarian cancer.

Methods

Expression of CGB genes and SP1, SP3, TFAP2A transcription factor genes was evaluated by RT-qPCR. The methylation status of CGB genes promoter regions was examined by methylation-specific PCR.

Results

mRNA arising from multiple CGB genes was detected in both ovarian control and malignant tissues. However, expression of CGB3–9 genes was shown to be significantly higher in malignant than healthy ovarian tissues. CGB1 and CGB2 transcripts were shown to be present in 20% of ovarian cancers, but were not detected in any of the control samples. Malignant tissues were characterized by DNA demethylation of CGB promoter regions. In ovarian cancer CGB expression positively correlated with TFAP2A transcripts level and expression of TFAP2A transcription factor was significantly higher in cancer than in control tissues. In contrast SP3 expression level was significantly lower in ovarian tumours than in control ovarian tissue.

Conclusions

In ovarian cancers increased expression of human chorionic gonadotropin beta subunit is associated with demethylation of CGB promoter regions. CGB3–9 expression level strongly correlates with expression of the TFAP2A transcription factor. Presence of mRNA arising from CGB1 and CGB2 genes appears to be a unique feature of a subset of ovarian cancers.
Literature
1.
go back to reference Srisuparp S, Strakova Z, Fazleabas AT. The role of chorionic gonadotropin (CG) in blastocyst implantation. Arch Med Res. 2001;32(6):627–34.CrossRef Srisuparp S, Strakova Z, Fazleabas AT. The role of chorionic gonadotropin (CG) in blastocyst implantation. Arch Med Res. 2001;32(6):627–34.CrossRef
2.
go back to reference Kayisli UA, Selam B, Guzeloglu-Kayisli O, Demir R, Arici A. Human chorionic gonadotropin contributes to maternal Immunotolerance and endometrial apoptosis by regulating Fas-Fas ligand system. J Immunol. 2003;171(5):2305–13.CrossRef Kayisli UA, Selam B, Guzeloglu-Kayisli O, Demir R, Arici A. Human chorionic gonadotropin contributes to maternal Immunotolerance and endometrial apoptosis by regulating Fas-Fas ligand system. J Immunol. 2003;171(5):2305–13.CrossRef
3.
go back to reference Herr F, Baal N, Reisinger K, Lorenz A, McKinnon T, Preissner KT, et al. hCG in the Regulation of Placental Angiogenesis. Results of an In Vitro Study. Placenta. IFPA and Elsevier Ltd. 2007;28(SUPPL. A):S85–93.CrossRef Herr F, Baal N, Reisinger K, Lorenz A, McKinnon T, Preissner KT, et al. hCG in the Regulation of Placental Angiogenesis. Results of an In Vitro Study. Placenta. IFPA and Elsevier Ltd. 2007;28(SUPPL. A):S85–93.CrossRef
4.
go back to reference Iles RK, Delves PJ, Butler SA. Does hCG or hCGβ play a role in cancer cell biology? Mol Cell Endocrinol. 2010;329(1–2):62–70.CrossRef Iles RK, Delves PJ, Butler SA. Does hCG or hCGβ play a role in cancer cell biology? Mol Cell Endocrinol. 2010;329(1–2):62–70.CrossRef
5.
go back to reference Hamada AL, Nakabayashi K, Sato A, Kiyoshi K, Takamatsu Y, Laoag-Fernandez JB, et al. Transfection of antisense chorionic gonadotropin β gene into Choriocarcinoma cells suppresses the cell proliferation and induces apoptosis. J Clin Endocrinol Metab. 2005;90(8):4873–9.CrossRef Hamada AL, Nakabayashi K, Sato A, Kiyoshi K, Takamatsu Y, Laoag-Fernandez JB, et al. Transfection of antisense chorionic gonadotropin β gene into Choriocarcinoma cells suppresses the cell proliferation and induces apoptosis. J Clin Endocrinol Metab. 2005;90(8):4873–9.CrossRef
6.
go back to reference Jankowska A, Gunderson SI, Andrusiewicz M, Burczynska B, Szczerba A, Jarmolowski A, et al. Reduction of human chorionic gonadotropin beta subunit expression by modified U1 snRNA caused apoptosis in cervical cancer cells. Mol Cancer. 2008;7:1–9.CrossRef Jankowska A, Gunderson SI, Andrusiewicz M, Burczynska B, Szczerba A, Jarmolowski A, et al. Reduction of human chorionic gonadotropin beta subunit expression by modified U1 snRNA caused apoptosis in cervical cancer cells. Mol Cancer. 2008;7:1–9.CrossRef
7.
go back to reference Cole LA. HCG variants, the growth factors which drive human malignancies. Am J Cancer Res. 2012;2(1):22–35.PubMed Cole LA. HCG variants, the growth factors which drive human malignancies. Am J Cancer Res. 2012;2(1):22–35.PubMed
8.
go back to reference Liu N, Peng S-M, Zhan G-X, Yu J, Wu W-M, Gao H, et al. Human chorionic gonadotropin beta regulates epithelial-mesenchymal transition and metastasis in human ovarian cancer. Oncol Rep. 2017:1464–72.CrossRef Liu N, Peng S-M, Zhan G-X, Yu J, Wu W-M, Gao H, et al. Human chorionic gonadotropin beta regulates epithelial-mesenchymal transition and metastasis in human ovarian cancer. Oncol Rep. 2017:1464–72.CrossRef
9.
go back to reference Gao S, Fan C, Huang H, Zhu C, Su M, Zhang Y. Effects of HCG on human epithelial ovarian cancer vasculogenic mimicry formation in vivo. Oncol Lett. 2016;12(1):459–66.CrossRef Gao S, Fan C, Huang H, Zhu C, Su M, Zhang Y. Effects of HCG on human epithelial ovarian cancer vasculogenic mimicry formation in vivo. Oncol Lett. 2016;12(1):459–66.CrossRef
10.
go back to reference Campain JA, Gutkin DW, Cox GS. Differential DNA methylation of the chorionic gonadotropin beta-subunit multigene family. Mol Endocrinol. 1993;7(10):1331–46.PubMed Campain JA, Gutkin DW, Cox GS. Differential DNA methylation of the chorionic gonadotropin beta-subunit multigene family. Mol Endocrinol. 1993;7(10):1331–46.PubMed
11.
go back to reference Grigoriu A, Ferreira JC, Choufani S, Baczyk D, Kingdom J, Weksberg R. Cell specific patterns of methylation in the human placenta. Epigenetics. 2011;6(3):368–79.CrossRef Grigoriu A, Ferreira JC, Choufani S, Baczyk D, Kingdom J, Weksberg R. Cell specific patterns of methylation in the human placenta. Epigenetics. 2011;6(3):368–79.CrossRef
12.
go back to reference Uusküla L, Rull K, Nagirnaja L, Laan M. Methylation allelic polymorphism (MAP) in chorionic gonadotropin β5 (CGB5) and its association with pregnancy success. J Clin Endocrinol Metab. 2011;96(1):199–207.CrossRef Uusküla L, Rull K, Nagirnaja L, Laan M. Methylation allelic polymorphism (MAP) in chorionic gonadotropin β5 (CGB5) and its association with pregnancy success. J Clin Endocrinol Metab. 2011;96(1):199–207.CrossRef
13.
go back to reference Głodek A, Kubiczak MJ, Walkowiak GP, Nowak-Markwitz E, Jankowska A. Methylation status of human chorionic gonadotropin beta subunit promoter and TFAP2A expression as factors regulating CGB gene expression in placenta. Fertil Steril. 2014;102(4):1175–1182.e8.CrossRef Głodek A, Kubiczak MJ, Walkowiak GP, Nowak-Markwitz E, Jankowska A. Methylation status of human chorionic gonadotropin beta subunit promoter and TFAP2A expression as factors regulating CGB gene expression in placenta. Fertil Steril. 2014;102(4):1175–1182.e8.CrossRef
14.
go back to reference Tian Q, Stepaniants SB, Mao M, Weng L, Feetham MC, Doyle MJ, et al. Integrated genomic and proteomic analyses of gene expression in mammalian cells. Mol Cell Proteomics. 2004;3(10):960–9.CrossRef Tian Q, Stepaniants SB, Mao M, Weng L, Feetham MC, Doyle MJ, et al. Integrated genomic and proteomic analyses of gene expression in mammalian cells. Mol Cell Proteomics. 2004;3(10):960–9.CrossRef
15.
go back to reference Bartel DP. MicroRNA target recognition and regulatory functions. Cell. 2009;136(2):215–33.CrossRef Bartel DP. MicroRNA target recognition and regulatory functions. Cell. 2009;136(2):215–33.CrossRef
16.
go back to reference Vogel C, De Sousa AR, Ko D, Le SY, Shapiro BA, Burns SC, et al. Sequence signatures and mRNA concentration can explain two-thirds of protein abundance variation in a human cell line. Mol Syst Biol Nature Publishing Group. 2010;6(400):1–9. Vogel C, De Sousa AR, Ko D, Le SY, Shapiro BA, Burns SC, et al. Sequence signatures and mRNA concentration can explain two-thirds of protein abundance variation in a human cell line. Mol Syst Biol Nature Publishing Group. 2010;6(400):1–9.
17.
go back to reference Schwanhüusser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, et al. Global quantification of mammalian gene expression control. Nature. 2011;473(7347):337–42.CrossRef Schwanhüusser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, et al. Global quantification of mammalian gene expression control. Nature. 2011;473(7347):337–42.CrossRef
18.
go back to reference Talmadge K, Boorstein WR, Vamvakopoulos NC, Gething MJ, Fiddes JC. Only three of the seven human chorionic gonadotropin beta subunit genes can be expressed in the placenta. Nucleic Acids Res. 1984;12(22):8415–36.CrossRef Talmadge K, Boorstein WR, Vamvakopoulos NC, Gething MJ, Fiddes JC. Only three of the seven human chorionic gonadotropin beta subunit genes can be expressed in the placenta. Nucleic Acids Res. 1984;12(22):8415–36.CrossRef
19.
go back to reference Hotakainen K, Lintula S, Jarvinen R, Paju A, Stenman J. Overexpression of human chorionic gonadotropin beta genes 3, 5 and 8 in tumor tissue and urinary cells of bladder cancer patients. Tumor Biol. 2007;28(1):52–6.CrossRef Hotakainen K, Lintula S, Jarvinen R, Paju A, Stenman J. Overexpression of human chorionic gonadotropin beta genes 3, 5 and 8 in tumor tissue and urinary cells of bladder cancer patients. Tumor Biol. 2007;28(1):52–6.CrossRef
20.
go back to reference Liu L, Roberts RM. Silencing of the gene for the beta subunit of human chorionic gonadotropin by the embryonic transcription factor Oct-3/4. J Biol Chem. 1996;271(28):16683–9.CrossRef Liu L, Roberts RM. Silencing of the gene for the beta subunit of human chorionic gonadotropin by the embryonic transcription factor Oct-3/4. J Biol Chem. 1996;271(28):16683–9.CrossRef
21.
go back to reference Ghosh D, Ezashi T, Ostrowski MC, Roberts RM. A central role for Ets-2 in the transcriptional regulation and cyclic adenosine 5′-monophosphate responsiveness of the human chorionic gonadotropin-β subunit gene. Mol Endocrinol. 2003;17(1):11–26.CrossRef Ghosh D, Ezashi T, Ostrowski MC, Roberts RM. A central role for Ets-2 in the transcriptional regulation and cyclic adenosine 5′-monophosphate responsiveness of the human chorionic gonadotropin-β subunit gene. Mol Endocrinol. 2003;17(1):11–26.CrossRef
22.
go back to reference Knöfler M, Saleh L, Bauer S, Galos B, Rotheneder H, Husslein P, et al. Transcriptional regulation of the human chorionic gonadotropin β gene during villous trophoblast differentiation. Endocrinology. 2004;145(4):1685–94.CrossRef Knöfler M, Saleh L, Bauer S, Galos B, Rotheneder H, Husslein P, et al. Transcriptional regulation of the human chorionic gonadotropin β gene during villous trophoblast differentiation. Endocrinology. 2004;145(4):1685–94.CrossRef
23.
go back to reference Fournier T, Guibourdenche J, Handschuh K, Tsatsaris V, Rauwel B, Davrinche C, et al. PPARγ and human trophoblast differentiation. J Reprod Immunol. 2011;90(1):41–9.CrossRef Fournier T, Guibourdenche J, Handschuh K, Tsatsaris V, Rauwel B, Davrinche C, et al. PPARγ and human trophoblast differentiation. J Reprod Immunol. 2011;90(1):41–9.CrossRef
24.
go back to reference Sohr S, Engeland K. The tumor suppressor p53 induces expression of the pregnancy-supporting human chorionic gonadotropin (hCG) CGB7 gene. Cell Cycle. 2011;10(21):3758–67.CrossRef Sohr S, Engeland K. The tumor suppressor p53 induces expression of the pregnancy-supporting human chorionic gonadotropin (hCG) CGB7 gene. Cell Cycle. 2011;10(21):3758–67.CrossRef
25.
go back to reference Chen Y, Miyazaki J, Nishizawa H, Kurahashi H, Leach R, Wang K. MTA3 regulates CGB5 and snail genes in trophoblast. Biochem Biophys Res Commun. 2013;433(4):379–84.CrossRef Chen Y, Miyazaki J, Nishizawa H, Kurahashi H, Leach R, Wang K. MTA3 regulates CGB5 and snail genes in trophoblast. Biochem Biophys Res Commun. 2013;433(4):379–84.CrossRef
26.
go back to reference Adams C, Henke A, Gromoll J. A novel two-promoter-one-gene system of the chorionic gonadotropin β gene enables tissue-specific expression. J Mol Endocrinol. 2011;47(3):285–98.CrossRef Adams C, Henke A, Gromoll J. A novel two-promoter-one-gene system of the chorionic gonadotropin β gene enables tissue-specific expression. J Mol Endocrinol. 2011;47(3):285–98.CrossRef
27.
go back to reference Kubiczak M, Walkowiak GP, Nowak-Markwitz E, Jankowska A. Human chorionic gonadotropin beta subunit genes CGB1 and CGB2 are transcriptionally active in ovarian cancer. Int J Mol Sci. 2013;14(6):12650–60.CrossRef Kubiczak M, Walkowiak GP, Nowak-Markwitz E, Jankowska A. Human chorionic gonadotropin beta subunit genes CGB1 and CGB2 are transcriptionally active in ovarian cancer. Int J Mol Sci. 2013;14(6):12650–60.CrossRef
28.
go back to reference Burczynska BB, Kobrouly L, Butler SA, Naase M, Iles RK. Novel insights into the expression of CGB1 1-2 genes by epithelial cancer cell lines secreting ectopic free. Anticancer Res. 2014;34(5):2239–48.PubMed Burczynska BB, Kobrouly L, Butler SA, Naase M, Iles RK. Novel insights into the expression of CGB1 1-2 genes by epithelial cancer cell lines secreting ectopic free. Anticancer Res. 2014;34(5):2239–48.PubMed
29.
go back to reference Rull K, Hallast P, Uusküla L, Jackson J, Punab M, Salumets A, et al. Fine-scale quantification of HCG beta gene transcription in human trophoblastic and non-malignant non-trophoblastic tissues. Mol Hum Reprod. 2008;14(1):23–31.CrossRef Rull K, Hallast P, Uusküla L, Jackson J, Punab M, Salumets A, et al. Fine-scale quantification of HCG beta gene transcription in human trophoblastic and non-malignant non-trophoblastic tissues. Mol Hum Reprod. 2008;14(1):23–31.CrossRef
30.
go back to reference Hallast P, Rull K, Laan M. The evolution and genomic landscape of CGB1 and CGB2 genes. Mol Cell Endocrinol Elsevier Ireland Ltd. 2007;260–262(1):2–11.CrossRef Hallast P, Rull K, Laan M. The evolution and genomic landscape of CGB1 and CGB2 genes. Mol Cell Endocrinol Elsevier Ireland Ltd. 2007;260–262(1):2–11.CrossRef
31.
go back to reference Ehrlich M, Gama-Sosa MA, Huang LH, Midgett RM, Kuo KC, Mccune RA, et al. Amount and distribution of 5-methylcytosine in human DNA from different types of tissues or cells. Nucleic Acids Res. 1982;10(8):2709–21.CrossRef Ehrlich M, Gama-Sosa MA, Huang LH, Midgett RM, Kuo KC, Mccune RA, et al. Amount and distribution of 5-methylcytosine in human DNA from different types of tissues or cells. Nucleic Acids Res. 1982;10(8):2709–21.CrossRef
32.
go back to reference Fuke C, Shimabukuro M, Petronis A, Sugimoto J, Oda T, Miura K, et al. Age related changes in 5-methylcytosine content in human peripheral leukocytes and placentas: an HPLC-based study. Ann Hum Genet. 2004;68(3):196–204.CrossRef Fuke C, Shimabukuro M, Petronis A, Sugimoto J, Oda T, Miura K, et al. Age related changes in 5-methylcytosine content in human peripheral leukocytes and placentas: an HPLC-based study. Ann Hum Genet. 2004;68(3):196–204.CrossRef
33.
go back to reference Gama-Sosa MA, Slagel VA, Trewyn RW, Oxenhandler R, Kuo KC, Gehrke CW, et al. The 5-methylcytosine content of DNA from human tumors. Nucleic Acids Res. 1983;11(19):6883–94.CrossRef Gama-Sosa MA, Slagel VA, Trewyn RW, Oxenhandler R, Kuo KC, Gehrke CW, et al. The 5-methylcytosine content of DNA from human tumors. Nucleic Acids Res. 1983;11(19):6883–94.CrossRef
34.
go back to reference Biadasiewicz K, Sonderegger S, Haslinger P, Haider S, Saleh L, Fiala C, et al. Transcription factor AP-2α promotes EGF-dependent invasion of human trophoblast. Endocrinology. 2011;152(4):1458–69.CrossRef Biadasiewicz K, Sonderegger S, Haslinger P, Haider S, Saleh L, Fiala C, et al. Transcription factor AP-2α promotes EGF-dependent invasion of human trophoblast. Endocrinology. 2011;152(4):1458–69.CrossRef
35.
go back to reference Chen L, Zhu H, Pan Y, Tang C, Watanabe M, Ruan H, et al. Ascorbic acid uptaken by sodium-dependent vitamin C transporter 2 induces ??hCG expression through Sp1 and TFAP2A transcription factors in human choriocarcinoma cells. J Clin Endocrinol Metab. 2012;97(9):1667–76.CrossRef Chen L, Zhu H, Pan Y, Tang C, Watanabe M, Ruan H, et al. Ascorbic acid uptaken by sodium-dependent vitamin C transporter 2 induces ??hCG expression through Sp1 and TFAP2A transcription factors in human choriocarcinoma cells. J Clin Endocrinol Metab. 2012;97(9):1667–76.CrossRef
36.
go back to reference Enninga EAL, Holtan SG, Creedon DJ, Dronca RS, Nevala WK, Ognjanovic S, et al. Immunomodulatory effects of sex hormones: requirements for pregnancy and relevance in melanoma. Mayo Clin Proc. 2014;89(4):520–35.CrossRef Enninga EAL, Holtan SG, Creedon DJ, Dronca RS, Nevala WK, Ognjanovic S, et al. Immunomodulatory effects of sex hormones: requirements for pregnancy and relevance in melanoma. Mayo Clin Proc. 2014;89(4):520–35.CrossRef
Metadata
Title
Regulation of human chorionic gonadotropin beta subunit expression in ovarian cancer
Authors
Aleksandra Śliwa
Marta Kubiczak
Anna Szczerba
Grzegorz Walkowiak
Ewa Nowak-Markwitz
Beata Burczyńska
Stephen Butler
Ray Iles
Piotr Białas
Anna Jankowska
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2019
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-019-5960-2

Other articles of this Issue 1/2019

BMC Cancer 1/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine