Skip to main content
Top
Published in: BMC Cancer 1/2018

Open Access 01-12-2018 | Research article

Genomic alterations in gastric cancers discovered via whole-exome sequencing

Authors: Jie Zhang, Weiqing Qiu, Hua Liu, Changlin Qian, Dujuan Liu, Hailong Wang, Ni Hu, Y. Tom Tang, Jianhua Sun, Zhiyong Shen

Published in: BMC Cancer | Issue 1/2018

Login to get access

Abstract

Background

Gastric cancer (GC) ranks the second in mortality rate among all cancers. Metastases account for most of the deaths in GC patients. Yet our understanding of GC and its metastasis mechanism is still very limited.

Methods

We performed 20 whole-exome sequencing (WES) on 5 typical metastatic gastric adenocarcinoma (GAC) patients with lymph node metastasis. We compared both the primary tumors to their metastatic lymph nodes, and a specific analysis pipeline was used to detect single nucleotide variants (SNVs), small insertions/deletions (indels) and copy number variants (CNVs).

Results

(1) We confirmed 30 candidate mutations in both primary and lymph nodes tissues, and other 7 only in primary tumors. (2) Copy number gains were observed in a large section of 17q12–21, as well as copy number losses in regions containing CDKN2A and CDKN2B in both primary and lymph nodes tissues.

Conclusions

Our results provide preliminary insights in the molecular mechanisms of GC initiation, development, and metastatic progression. These results need to be validated through large-scale studies.
Appendix
Available only for authorised users
Literature
1.
go back to reference Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.CrossRefPubMed Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.CrossRefPubMed
2.
go back to reference Lauren P. The two histological main types of gastric carcinoma, an attempt at a histoclinical classification. Acta Pathol Microbiol Scand. 1965;64:31–49.CrossRefPubMed Lauren P. The two histological main types of gastric carcinoma, an attempt at a histoclinical classification. Acta Pathol Microbiol Scand. 1965;64:31–49.CrossRefPubMed
3.
go back to reference Ferlay J, Soerjomataram I, Ervik M, et al. GLOBOCAN 2012 v1.0, Cancer incidence and mortality worldwide: IARC CancerBase No. 11: International Agency for Research on Cancer Web site; 2013. http://globocan.iarc.fr. Accessed 24 Nov 2014 Ferlay J, Soerjomataram I, Ervik M, et al. GLOBOCAN 2012 v1.0, Cancer incidence and mortality worldwide: IARC CancerBase No. 11: International Agency for Research on Cancer Web site; 2013. http://​globocan.​iarc.​fr. Accessed 24 Nov 2014
4.
go back to reference Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66(2):115–32.CrossRefPubMed Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66(2):115–32.CrossRefPubMed
5.
go back to reference Zheng L, et al. Molecular basis of gastric cancer development and progression. Gastric Cancer. 2004;7(2):61–77.CrossRefPubMed Zheng L, et al. Molecular basis of gastric cancer development and progression. Gastric Cancer. 2004;7(2):61–77.CrossRefPubMed
7.
go back to reference de Leon MP. Oncogenes and tumor suppressor genes. In: de Leon MP, editor. Familial and hereditary tumors. Springer Berlin Heidelberg; 1994. p. 35–47.CrossRef de Leon MP. Oncogenes and tumor suppressor genes. In: de Leon MP, editor. Familial and hereditary tumors. Springer Berlin Heidelberg; 1994. p. 35–47.CrossRef
8.
go back to reference Li-Chang HH, Kasaian K, Ng Y, et al. Retrospective review using targeted deep sequencing reveals mutational differences between gastroesophageal junction and gastric carcinomas. BMC Cancer. 2015;15(1):1.CrossRef Li-Chang HH, Kasaian K, Ng Y, et al. Retrospective review using targeted deep sequencing reveals mutational differences between gastroesophageal junction and gastric carcinomas. BMC Cancer. 2015;15(1):1.CrossRef
10.
go back to reference Sato F, Meltzer SJ. CpG island hypermethylation in progression of esophageal and gastric cancer. Cancer. 2006;106(3):483–93.CrossRefPubMed Sato F, Meltzer SJ. CpG island hypermethylation in progression of esophageal and gastric cancer. Cancer. 2006;106(3):483–93.CrossRefPubMed
11.
go back to reference Tamura G. Alterations of tumor suppressor and tumor-related genes in the development and progression of gastric cancer. World J Gastroenterol. 2006;12(2):192.CrossRefPubMedPubMedCentral Tamura G. Alterations of tumor suppressor and tumor-related genes in the development and progression of gastric cancer. World J Gastroenterol. 2006;12(2):192.CrossRefPubMedPubMedCentral
12.
go back to reference Guo M, Yan W. Epigenetics of gastric cancer. In: Verma M, editor. Cancer Epigenetics: Risk Assessment, Diagnosis, Treatment, and Prognosis. New York: Springer; 2015. p. 783–99. Guo M, Yan W. Epigenetics of gastric cancer. In: Verma M, editor. Cancer Epigenetics: Risk Assessment, Diagnosis, Treatment, and Prognosis. New York: Springer; 2015. p. 783–99.
13.
go back to reference Wang K, Kan J, Yuen ST, et al. Exome sequencing identifies frequent mutation of ARID1A in molecular subtypes of gastric cancer. Nat Genet. 2011;43(12):1219–23.CrossRefPubMed Wang K, Kan J, Yuen ST, et al. Exome sequencing identifies frequent mutation of ARID1A in molecular subtypes of gastric cancer. Nat Genet. 2011;43(12):1219–23.CrossRefPubMed
14.
go back to reference Wang K, Yuen ST, Xu J, et al. Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. Nat Genet. 2014;46(6):573–82.CrossRefPubMed Wang K, Yuen ST, Xu J, et al. Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. Nat Genet. 2014;46(6):573–82.CrossRefPubMed
15.
go back to reference Guilford P, Hopkins J, Harraway J, McLeod M, McLeod N, Harawira P, Taite H, Scoular R, Miller A, Reeve AE. E-cadherin germline mutations in familial gastric cancer. Nature. 1998;392(6674):402–5.CrossRefPubMed Guilford P, Hopkins J, Harraway J, McLeod M, McLeod N, Harawira P, Taite H, Scoular R, Miller A, Reeve AE. E-cadherin germline mutations in familial gastric cancer. Nature. 1998;392(6674):402–5.CrossRefPubMed
16.
go back to reference Miranda E, Destro A, Malesci A, et al. Genetic and epigenetic changes in primary metastatic and nonmetastatic colorectal cancer. Br J Cancer. 2006;95(8):1101–7.CrossRefPubMedPubMedCentral Miranda E, Destro A, Malesci A, et al. Genetic and epigenetic changes in primary metastatic and nonmetastatic colorectal cancer. Br J Cancer. 2006;95(8):1101–7.CrossRefPubMedPubMedCentral
20.
go back to reference McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation. Genome Res. 2010;20(9):1297–1303. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation. Genome Res. 2010;20(9):1297–1303.
21.
go back to reference Cibulskis K, Lawrence MS, Carter SL, Sivachenko A, Jaffe D, Sougnez C, Gabriel S, Meyerson M, Lander ES, Getz G. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol. 2013;31:213–9.CrossRefPubMedPubMedCentral Cibulskis K, Lawrence MS, Carter SL, Sivachenko A, Jaffe D, Sougnez C, Gabriel S, Meyerson M, Lander ES, Getz G. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol. 2013;31:213–9.CrossRefPubMedPubMedCentral
23.
go back to reference D'Aurizio R, Pippucci T, Tattini L, et al. Enhanced copy number variants detection from whole-exome sequencing data using EXCAVATOR2. Nucleic Acids Res. 2016;44(20):e154.PubMedPubMedCentral D'Aurizio R, Pippucci T, Tattini L, et al. Enhanced copy number variants detection from whole-exome sequencing data using EXCAVATOR2. Nucleic Acids Res. 2016;44(20):e154.PubMedPubMedCentral
24.
go back to reference Thorvaldsdóttír H, et al. Integrated genomics viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform. 2013;14(2):178–92.CrossRefPubMed Thorvaldsdóttír H, et al. Integrated genomics viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform. 2013;14(2):178–92.CrossRefPubMed
26.
go back to reference Liu H, Li F, Zhu Y, et al. Whole-exome sequencing to identify somatic mutations in peritoneal metastatic gastric adenocarcinoma: a preliminary study. Oncotarget. 2016;7(28):43894.PubMedPubMedCentral Liu H, Li F, Zhu Y, et al. Whole-exome sequencing to identify somatic mutations in peritoneal metastatic gastric adenocarcinoma: a preliminary study. Oncotarget. 2016;7(28):43894.PubMedPubMedCentral
27.
go back to reference Chen K, Yang D, Li X, et al. Mutational landscape of gastric adenocarcinoma in Chinese: implications for prognosis and therapy. Proc Natl Acad Sci U S A. 2015;112(4):1107–12.CrossRefPubMedPubMedCentral Chen K, Yang D, Li X, et al. Mutational landscape of gastric adenocarcinoma in Chinese: implications for prognosis and therapy. Proc Natl Acad Sci U S A. 2015;112(4):1107–12.CrossRefPubMedPubMedCentral
28.
go back to reference Zang ZJ, Cutcutache I, Poon SL, et al. Exome sequencing of gastric adenocarcinoma identifies recurrent somatic mutations in cell adhesion and chromatin remodeling genes. Nat Genet. 2012;44(5):570–4.CrossRefPubMed Zang ZJ, Cutcutache I, Poon SL, et al. Exome sequencing of gastric adenocarcinoma identifies recurrent somatic mutations in cell adhesion and chromatin remodeling genes. Nat Genet. 2012;44(5):570–4.CrossRefPubMed
31.
go back to reference Liang L, Fang JY, Xu J. Gastric cancer and gene copy number variation: emerging cancer drivers for targeted therapy. Oncogene. 2016;35(12):1475–82.CrossRefPubMed Liang L, Fang JY, Xu J. Gastric cancer and gene copy number variation: emerging cancer drivers for targeted therapy. Oncogene. 2016;35(12):1475–82.CrossRefPubMed
32.
go back to reference Katoh M, Katoh M. Evolutionary recombination hotspot around GSDML-GSDM locus is closely linked to the oncogenomic recombination hotspot around the PPP1R1B-ERBB2-GRB7 amplicon. Int J Oncol. 2004;24(4):757–63.PubMed Katoh M, Katoh M. Evolutionary recombination hotspot around GSDML-GSDM locus is closely linked to the oncogenomic recombination hotspot around the PPP1R1B-ERBB2-GRB7 amplicon. Int J Oncol. 2004;24(4):757–63.PubMed
33.
go back to reference Maqani N, Belkhiri A, Moskaluk C, et al. Molecular dissection of 17q12 amplicon in upper gastrointestinal adenocarcinomas. Mol Cancer Res. 2006;4(7):449–55.CrossRefPubMed Maqani N, Belkhiri A, Moskaluk C, et al. Molecular dissection of 17q12 amplicon in upper gastrointestinal adenocarcinomas. Mol Cancer Res. 2006;4(7):449–55.CrossRefPubMed
34.
go back to reference Varis A, Wolf M, Monni O, et al. Targets of gene amplification and overexpression at 17q in gastric cancer. Cancer Res. 2002;62(9):2625–9.PubMed Varis A, Wolf M, Monni O, et al. Targets of gene amplification and overexpression at 17q in gastric cancer. Cancer Res. 2002;62(9):2625–9.PubMed
35.
go back to reference Suzuki H, Zhou X, Yin J, et al. Intragenic mutations of CDKN2B and CDKN2A in primary human esophageal cancers. Hum Mol Genet. 1995;4(10):1883–7.CrossRefPubMed Suzuki H, Zhou X, Yin J, et al. Intragenic mutations of CDKN2B and CDKN2A in primary human esophageal cancers. Hum Mol Genet. 1995;4(10):1883–7.CrossRefPubMed
36.
go back to reference Young RJ, Waldeck K, Martin C, et al. Loss of CDKN2A expression is a frequent event in primary invasive melanoma and correlates with sensitivity to the CDK4/6 inhibitor PD0332991 in melanoma cell lines. Pigment Cell Melanoma Res. 2014;27(4):590–600.CrossRefPubMed Young RJ, Waldeck K, Martin C, et al. Loss of CDKN2A expression is a frequent event in primary invasive melanoma and correlates with sensitivity to the CDK4/6 inhibitor PD0332991 in melanoma cell lines. Pigment Cell Melanoma Res. 2014;27(4):590–600.CrossRefPubMed
Metadata
Title
Genomic alterations in gastric cancers discovered via whole-exome sequencing
Authors
Jie Zhang
Weiqing Qiu
Hua Liu
Changlin Qian
Dujuan Liu
Hailong Wang
Ni Hu
Y. Tom Tang
Jianhua Sun
Zhiyong Shen
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2018
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-018-5097-8

Other articles of this Issue 1/2018

BMC Cancer 1/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine