Skip to main content
Top
Published in: BMC Cancer 1/2018

Open Access 01-12-2018 | Research article

Nm23-H1 is involved in the repair of ionizing radiation-induced DNA double-strand breaks in the A549 lung cancer cell line

Authors: Ya Sheng, Mingfang Xu, Chongyi Li, Yanli Xiong, Yi Yang, Xunjie Kuang, Dong Wang, Xueqin Yang

Published in: BMC Cancer | Issue 1/2018

Login to get access

Abstract

Background

Although originally identified as a putative metastasis suppressor, increasing studies have confirmed a possible role for Nm23-H1 in DNA repair, through the base excision repair and nucleotide excision repair pathways. In this study, we explored whether Nm23-H1 was also involved in double-strand break repair (DSBR).

Methods and results

We constructed a stable A549-shNm23-H1 cell line with doxycycline-regulated expression of Nm23-H1, and a A549-nNm23-H1 cell line that over expressed a nucleus-localized version of Nm23-H1. Results from both lines confirmed that Nm23-H1 participated in the repair of double-strand breaks induced by X-rays, using Comet and γ-H2AX foci assays. Subsequent studies showed that Nm23-H1 activated the phosphorylation of checkpoint-related proteins including ATM serine/threonine kinase (on S1981), tumor protein p53 (on S15), and checkpoint kinase 2 (Chk2) (on T68). We also detected interactions between Nm23-H1 and the MRE11-RAD50-NBS1 (MRN) complex, as well as Ku80. Moreover, NBS1 and Ku80 levels were comparably higher in Nm23-H1 overexpressing cells than in control cells (t = 14.462, p < 0.001 and t = 5.347, p = 0.006, respectively). As Ku80 is the keystone of the non-homologous end joining (NHEJ) pathway, we speculate that Nm23-H1 promotes DSBR through NHEJ.

Conclusions

The results indicate that Nm23-H1 participates in multiple steps of DSBR.
Literature
1.
go back to reference Vlatkovic N, Chang SH, Boyd MT. Janus-faces of NME-oncoprotein interactions. Naunyn Schmiedeberg's Arch Pharmacol. 2015;388(2):175–87.CrossRef Vlatkovic N, Chang SH, Boyd MT. Janus-faces of NME-oncoprotein interactions. Naunyn Schmiedeberg's Arch Pharmacol. 2015;388(2):175–87.CrossRef
2.
go back to reference Agarwal RP, Robison B, Parks RE Jr. Nucleoside diphosphokinase from human erythrocytes. Methods Enzymol. 1978;51:376–86.CrossRefPubMed Agarwal RP, Robison B, Parks RE Jr. Nucleoside diphosphokinase from human erythrocytes. Methods Enzymol. 1978;51:376–86.CrossRefPubMed
3.
go back to reference Ma D, McCorkle JR, Kaetzel DM. The metastasis suppressor NM23-H1 possesses 3′-5′ exonuclease activity. J Biol Chem. 2004;279(17):18073–84.CrossRefPubMed Ma D, McCorkle JR, Kaetzel DM. The metastasis suppressor NM23-H1 possesses 3′-5′ exonuclease activity. J Biol Chem. 2004;279(17):18073–84.CrossRefPubMed
4.
5.
go back to reference Yang M, Jarrett SG, Craven R, Kaetzel DM. YNK1, the yeast homolog of human metastasis suppressor NM23, is required for repair of UV radiation- and etoposide-induced DNA damage. Mutat Res. 2009;660(1–2):74–8.CrossRefPubMed Yang M, Jarrett SG, Craven R, Kaetzel DM. YNK1, the yeast homolog of human metastasis suppressor NM23, is required for repair of UV radiation- and etoposide-induced DNA damage. Mutat Res. 2009;660(1–2):74–8.CrossRefPubMed
6.
go back to reference Zhang ZM, Yang XQ, Wang D, Wang G, Yang ZZ, Qing Y, Yang ZX, Li MX, Xiang DB. Nm23-H1 protein binds to APE1 at AP sites and stimulates AP endonuclease activity following ionizing radiation of the human lung cancer A549 cells. Cell Biochem Biophys. 2011;61(3):561–72.CrossRefPubMed Zhang ZM, Yang XQ, Wang D, Wang G, Yang ZZ, Qing Y, Yang ZX, Li MX, Xiang DB. Nm23-H1 protein binds to APE1 at AP sites and stimulates AP endonuclease activity following ionizing radiation of the human lung cancer A549 cells. Cell Biochem Biophys. 2011;61(3):561–72.CrossRefPubMed
7.
go back to reference Jarrett SG, Novak M, Dabernat S, Daniel JY, Mellon I, Zhang Q, Harris N, Ciesielski MJ, Fenstermaker RA, Kovacic D, et al. Metastasis suppressor NM23-H1 promotes repair of UV-induced DNA damage and suppresses UV-induced melanomagenesis. Cancer Res. 2012;72(1):133–43.CrossRefPubMed Jarrett SG, Novak M, Dabernat S, Daniel JY, Mellon I, Zhang Q, Harris N, Ciesielski MJ, Fenstermaker RA, Kovacic D, et al. Metastasis suppressor NM23-H1 promotes repair of UV-induced DNA damage and suppresses UV-induced melanomagenesis. Cancer Res. 2012;72(1):133–43.CrossRefPubMed
8.
go back to reference Sheng Y, Xiong Y, Xu M, Kuang X, Wang D, Yang X. Effect of Nm23-H1 nuclear localization on proliferation of human lung adenocarcinoma cell line A549. Zhongguo Fei Ai Za Zhi. 2017;20(4):226–32.PubMed Sheng Y, Xiong Y, Xu M, Kuang X, Wang D, Yang X. Effect of Nm23-H1 nuclear localization on proliferation of human lung adenocarcinoma cell line A549. Zhongguo Fei Ai Za Zhi. 2017;20(4):226–32.PubMed
9.
go back to reference Tommasino F, Friedrich T, Jakob B, Meyer B, Durante M, Scholz M. Induction and processing of the radiation-induced gamma-H2AX signal and its link to the underlying pattern of DSB: a combined experimental and modelling study. PLoS One. 2015;10(6):e0129416.CrossRefPubMedPubMedCentral Tommasino F, Friedrich T, Jakob B, Meyer B, Durante M, Scholz M. Induction and processing of the radiation-induced gamma-H2AX signal and its link to the underlying pattern of DSB: a combined experimental and modelling study. PLoS One. 2015;10(6):e0129416.CrossRefPubMedPubMedCentral
10.
go back to reference An J, Huang YC, Xu QZ, Zhou LJ, Shang ZF, Huang B, Wang Y, Liu XD, Wu DC, Zhou PK. DNA-PKcs plays a dominant role in the regulation of H2AX phosphorylation in response to DNA damage and cell cycle progression. BMC Mol Biol. 2010;11:18.CrossRefPubMedPubMedCentral An J, Huang YC, Xu QZ, Zhou LJ, Shang ZF, Huang B, Wang Y, Liu XD, Wu DC, Zhou PK. DNA-PKcs plays a dominant role in the regulation of H2AX phosphorylation in response to DNA damage and cell cycle progression. BMC Mol Biol. 2010;11:18.CrossRefPubMedPubMedCentral
11.
go back to reference Wiznerowicz M, Trono D. Conditional suppression of cellular genes: lentivirus vector-mediated drug-inducible RNA interference. J Virol. 2003;77(16):8957–61.CrossRefPubMedPubMedCentral Wiznerowicz M, Trono D. Conditional suppression of cellular genes: lentivirus vector-mediated drug-inducible RNA interference. J Virol. 2003;77(16):8957–61.CrossRefPubMedPubMedCentral
12.
go back to reference Qing Y, Yang XQ, Zhong ZY, Lei X, Xie JY, Li MX, Xiang DB, Li ZP, Yang ZZ, Wang G, et al. Microarray analysis of DNA damage repair gene expression profiles in cervical cancer cells radioresistant to 252Cf neutron and X-rays. BMC Cancer. 2010;10:71.CrossRefPubMedPubMedCentral Qing Y, Yang XQ, Zhong ZY, Lei X, Xie JY, Li MX, Xiang DB, Li ZP, Yang ZZ, Wang G, et al. Microarray analysis of DNA damage repair gene expression profiles in cervical cancer cells radioresistant to 252Cf neutron and X-rays. BMC Cancer. 2010;10:71.CrossRefPubMedPubMedCentral
13.
go back to reference D'Amours D, Jackson SP. The Mre11 complex: at the crossroads of dna repair and checkpoint signalling. Nat Rev Mol Cell Biol. 2002;3(5):317–27.CrossRefPubMed D'Amours D, Jackson SP. The Mre11 complex: at the crossroads of dna repair and checkpoint signalling. Nat Rev Mol Cell Biol. 2002;3(5):317–27.CrossRefPubMed
14.
go back to reference Helleday T, Lo J, van Gent DC, Engelward BP. DNA double-strand break repair: from mechanistic understanding to cancer treatment. DNA Repair (Amst). 2007;6(7):923–35.CrossRef Helleday T, Lo J, van Gent DC, Engelward BP. DNA double-strand break repair: from mechanistic understanding to cancer treatment. DNA Repair (Amst). 2007;6(7):923–35.CrossRef
15.
go back to reference Branzei D, Foiani M. Regulation of DNA repair throughout the cell cycle. Nat Rev Mol Cell Biol. 2008;9(4):297–308.CrossRefPubMed Branzei D, Foiani M. Regulation of DNA repair throughout the cell cycle. Nat Rev Mol Cell Biol. 2008;9(4):297–308.CrossRefPubMed
16.
go back to reference Povirk LF. Biochemical mechanisms of chromosomal translocations resulting from DNA double-strand breaks. DNA Repair (Amst). 2006;5(9–10):1199–212.CrossRef Povirk LF. Biochemical mechanisms of chromosomal translocations resulting from DNA double-strand breaks. DNA Repair (Amst). 2006;5(9–10):1199–212.CrossRef
17.
go back to reference Kaetzel DM, Leonard MK, Cook GS, Novak M, Jarrett SG, Yang X, Belkin AM. Dual functions of NME1 in suppression of cell motility and enhancement of genomic stability in melanoma. Naunyn Schmiedeberg's Arch Pharmacol. 2015;388(2):199–206.CrossRef Kaetzel DM, Leonard MK, Cook GS, Novak M, Jarrett SG, Yang X, Belkin AM. Dual functions of NME1 in suppression of cell motility and enhancement of genomic stability in melanoma. Naunyn Schmiedeberg's Arch Pharmacol. 2015;388(2):199–206.CrossRef
18.
go back to reference Ma D, Xing Z, Liu B, Pedigo NG, Zimmer SG, Bai Z, Postel EH, Kaetzel DM. NM23-H1 and NM23-H2 repress transcriptional activities of nuclease-hypersensitive elements in the platelet-derived growth factor-a promoter. J Biol Chem. 2002;277(2):1560–7.CrossRefPubMed Ma D, Xing Z, Liu B, Pedigo NG, Zimmer SG, Bai Z, Postel EH, Kaetzel DM. NM23-H1 and NM23-H2 repress transcriptional activities of nuclease-hypersensitive elements in the platelet-derived growth factor-a promoter. J Biol Chem. 2002;277(2):1560–7.CrossRefPubMed
19.
go back to reference Kaetzel DM, Zhang Q, Yang M, McCorkle JR, Ma D, Craven RJ. Potential roles of 3′-5′ exonuclease activity of NM23-H1 in DNA repair and malignant progression. J Bioenerg Biomembr. 2006;38(3–4):163–7.CrossRefPubMed Kaetzel DM, Zhang Q, Yang M, McCorkle JR, Ma D, Craven RJ. Potential roles of 3′-5′ exonuclease activity of NM23-H1 in DNA repair and malignant progression. J Bioenerg Biomembr. 2006;38(3–4):163–7.CrossRefPubMed
20.
go back to reference Zhang X, Lu Q, Inouye M, Mathews CK. Effects of T4 phage infection and anaerobiosis upon nucleotide pools and mutagenesis in nucleoside diphosphokinase-defective Escherichia coli strains. J Bacteriol. 1996;178(14):4115–21.CrossRefPubMedPubMedCentral Zhang X, Lu Q, Inouye M, Mathews CK. Effects of T4 phage infection and anaerobiosis upon nucleotide pools and mutagenesis in nucleoside diphosphokinase-defective Escherichia coli strains. J Bacteriol. 1996;178(14):4115–21.CrossRefPubMedPubMedCentral
21.
go back to reference Chen YL, Eriksson S, Chang ZF. Regulation and functional contribution of thymidine kinase 1 in repair of DNA damage. J Biol Chem. 2010;285(35):27327–35.CrossRefPubMedPubMedCentral Chen YL, Eriksson S, Chang ZF. Regulation and functional contribution of thymidine kinase 1 in repair of DNA damage. J Biol Chem. 2010;285(35):27327–35.CrossRefPubMedPubMedCentral
22.
go back to reference Kunos CA, Colussi VC, Pink J, Radivoyevitch T, Oleinick NL. Radiosensitization of human cervical cancer cells by inhibiting ribonucleotide reductase: enhanced radiation response at low-dose rates. Int J Radiat Oncol Biol Phys. 2011;80(4):1198–204.CrossRefPubMedPubMedCentral Kunos CA, Colussi VC, Pink J, Radivoyevitch T, Oleinick NL. Radiosensitization of human cervical cancer cells by inhibiting ribonucleotide reductase: enhanced radiation response at low-dose rates. Int J Radiat Oncol Biol Phys. 2011;80(4):1198–204.CrossRefPubMedPubMedCentral
23.
go back to reference Tsao N, Yang YC, Deng YJ, Chang ZF. The direct interaction of NME3 with Tip60 in DNA repair. Biochem J. 2016;473(9):1237–45.CrossRefPubMed Tsao N, Yang YC, Deng YJ, Chang ZF. The direct interaction of NME3 with Tip60 in DNA repair. Biochem J. 2016;473(9):1237–45.CrossRefPubMed
24.
go back to reference Rothkamm K, Kruger I, Thompson LH, Lobrich M. Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol Cell Biol. 2003;23(16):5706–15.CrossRefPubMedPubMedCentral Rothkamm K, Kruger I, Thompson LH, Lobrich M. Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol Cell Biol. 2003;23(16):5706–15.CrossRefPubMedPubMedCentral
25.
go back to reference Mahaney BL, Meek K, Lees-Miller SP. Repair of ionizing radiation-induced DNA double-strand breaks by non-homologous end-joining. Biochem J. 2009;417(3):639–50.CrossRefPubMedPubMedCentral Mahaney BL, Meek K, Lees-Miller SP. Repair of ionizing radiation-induced DNA double-strand breaks by non-homologous end-joining. Biochem J. 2009;417(3):639–50.CrossRefPubMedPubMedCentral
26.
go back to reference Li B, Comai L. Requirements for the nucleolytic processing of DNA ends by the Werner syndrome protein-Ku70/80 complex. J Biol Chem. 2001;276(13):9896–902.CrossRefPubMed Li B, Comai L. Requirements for the nucleolytic processing of DNA ends by the Werner syndrome protein-Ku70/80 complex. J Biol Chem. 2001;276(13):9896–902.CrossRefPubMed
27.
go back to reference Cooper MP, Machwe A, Orren DK, Brosh RM, Ramsden D. Bohr VA. Ku complex interacts with and stimulates the Werner protein. Genes Dev. 2000;14(8):907–12.PubMedPubMedCentral Cooper MP, Machwe A, Orren DK, Brosh RM, Ramsden D. Bohr VA. Ku complex interacts with and stimulates the Werner protein. Genes Dev. 2000;14(8):907–12.PubMedPubMedCentral
28.
go back to reference Karmakar P, Snowden CM, Ramsden DA, Bohr VA. Ku heterodimer binds to both ends of the Werner protein and functional interaction occurs at the Werner N-terminus. Nucleic Acids Res. 2002;30(16):3583–91.CrossRefPubMedPubMedCentral Karmakar P, Snowden CM, Ramsden DA, Bohr VA. Ku heterodimer binds to both ends of the Werner protein and functional interaction occurs at the Werner N-terminus. Nucleic Acids Res. 2002;30(16):3583–91.CrossRefPubMedPubMedCentral
29.
go back to reference Desai-Mehta A, Cerosaletti KM, Concannon P. Distinct functional domains of nibrin mediate Mre11 binding, focus formation, and nuclear localization. Mol Cell Biol. 2001;21(6):2184–91.CrossRefPubMedPubMedCentral Desai-Mehta A, Cerosaletti KM, Concannon P. Distinct functional domains of nibrin mediate Mre11 binding, focus formation, and nuclear localization. Mol Cell Biol. 2001;21(6):2184–91.CrossRefPubMedPubMedCentral
30.
go back to reference Burkhalter MD, Roberts SA, Havener JM, Ramsden DA. Activity of ribonucleotide reductase helps determine how cells repair DNA double strand breaks. DNA Repair (Amst). 2009;8(11):1258–63.CrossRef Burkhalter MD, Roberts SA, Havener JM, Ramsden DA. Activity of ribonucleotide reductase helps determine how cells repair DNA double strand breaks. DNA Repair (Amst). 2009;8(11):1258–63.CrossRef
Metadata
Title
Nm23-H1 is involved in the repair of ionizing radiation-induced DNA double-strand breaks in the A549 lung cancer cell line
Authors
Ya Sheng
Mingfang Xu
Chongyi Li
Yanli Xiong
Yi Yang
Xunjie Kuang
Dong Wang
Xueqin Yang
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2018
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-018-4592-2

Other articles of this Issue 1/2018

BMC Cancer 1/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine