Skip to main content

Advertisement

Log in

Janus-faces of NME–oncoprotein interactions

  • Review
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Since the identification of Nm23 (NME1, NME/NM23 nucleoside diphosphate kinase 1) as the first non-metastatic protein, a great deal of research on members of the NME family of proteins has focused on roles in processes implicated in carcinogenesis and particularly their regulation of cellular motility and the process of metastatic spread. To date, there are ten identified members of this family of genes, and these can be dichotomized into groups both taxonomically and by the presence or absence of their nucleoside diphosphate kinase activity with NMEs 1–4 encoding nucleoside diphosphate kinases (NDPKs) and NMEs 5–9 plus RP2 displaying little if any NDPK activity. NMEs are relatively small proteins that can form hetero-oligomers (typically hexamers), and given the apparent genetic redundancy of some NMEs and the number of different isoforms, it is perhaps not surprising that there remains a great deal of uncertainty regarding their function and even more regarding cellular mechanisms of action. Since residues that contribute to NDPK activity span much of the protein, it seems likely that the consequences of NME expression must be mediated through their NDPK activity, through interactions with other structures in cells including protein–protein interactions or through combinations of these. Our goal in this review is to focus on some of the protein–protein interactions that have been identified and to highlight some of the challenges that face this area of research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aktary Z, Chapman K, Lam L, Lo A, Ji C, Graham K, Cook L, Li L, Mackey JR, Pasdar M (2010) Plakoglobin interacts with and increases the protein levels of metastasis suppressor Nm23-H2 and regulates the expression of Nm23-H1. Oncogene 29:2118–2129

    Article  CAS  PubMed  Google Scholar 

  • Anand R, Wai T, Baker MJ, Kladt N, Schauss AC, Rugarli E, Langer T (2014) The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission. J Cell Biol 204:919–929

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Anumanthan G, Halder SK, Friedman DB, Datta PK (2006) Oncogenic serine-threonine kinase receptor-associated protein modulates the function of Ewing sarcoma protein through a novel mechanism. Cancer Res 66:10824–10832

    Article  CAS  PubMed  Google Scholar 

  • Arnaud-Dabernat S, Bourbon PM, Dierich A, Le Meur M, Daniel JY (2003) Knockout mice as model systems for studying nm23/NDP kinase gene functions. Application to the nm23-M1 gene. J Bioenerg Biomembr 35:19–30

    Article  CAS  PubMed  Google Scholar 

  • Attwood PV (2013) Histidine kinases from bacteria to humans. Biochem Soc Trans 41:1023–1028

    Article  CAS  PubMed  Google Scholar 

  • Attwood PV, Wieland T (2014) Nucleoside diphosphate kinase as protein histidine kinase. Naunyn-Schmiedeberg’s archives of pharmacology

  • Baillat G, Gaillard S, Castets F, Monneron A (2002) Interactions of phocein with nucleoside-diphosphate kinase, Eps15, and Dynamin I. J Biol Chem 277:18961–18966

    Article  CAS  PubMed  Google Scholar 

  • Boissan M, Wendum D, Arnaud-Dabernat S, Munier A, Debray M, Lascu I, Daniel JY, Lacombe ML (2005) Increased lung metastasis in transgenic NM23-Null/SV40 mice with hepatocellular carcinoma. J Natl Cancer Inst 97:836–845

    Article  CAS  PubMed  Google Scholar 

  • Boissan M, Dabernat S, Peuchant E, Schlattner U, Lascu I, Lacombe ML (2009) The mammalian Nm23/NDPK family: from metastasis control to cilia movement. Mol Cell Biochem 329:51–62

    Article  CAS  PubMed  Google Scholar 

  • Boissan M, Montagnac G, Shen Q, Griparic L, Guitton J, Romao M, Sauvonnet N, Lagache T, Lascu I, Raposo G, Desbourdes C, Schlattner U, Lacombe ML, Polo S, van der Bliek AM, Roux A, Chavrier P (2014) Membrane trafficking. Nucleoside diphosphate kinases fuel dynamin superfamily proteins with GTP for membrane remodeling. Science 344:1510–1515

    Article  CAS  PubMed  Google Scholar 

  • Brady CA, Jiang D, Mello SS, Johnson TM, Jarvis LA, Kozak MM, Kenzelmann Broz D, Basak S, Park EJ, McLaughlin ME, Karnezis AN, Attardi LD (2011) Distinct p53 transcriptional programs dictate acute DNA-damage responses and tumor suppression. Cell 145:571–583

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bucala R (1996) MIF rediscovered: cytokine, pituitary hormone, and glucocorticoid-induced regulator of the immune response. FASEB J: Off Publ Fed Am Soc Exp Biol 10:1607–1613

    CAS  Google Scholar 

  • Bui HT, Shaw JM (2013) Dynamin assembly strategies and adaptor proteins in mitochondrial fission. Curr Biol: CB 23:R891–R899

    Article  CAS  PubMed  Google Scholar 

  • Cai X, Srivastava S, Surindran S, Li Z, Skolnik EY (2014) Regulation of the epithelial Ca(2)(+) channel TRPV5 by reversible histidine phosphorylation mediated by NDPK-B and PHPT1. Mol Biol Cell 25:1244–1250

    Article  PubMed Central  PubMed  Google Scholar 

  • Carotenuto M, de Antonellis P, Chiarolla CM, Attanasio C, Damiani V, Boffa I, Aiese N, Pedone E, Accordi B, Basso G, Navas L, Imbimbo C, Zollo M (2014a) A therapeutic approach to treat prostate cancer by targeting Nm23-H1/h-Prune interaction. Naunyn-Schmiedeberg’s archives of pharmacology

  • Carotenuto M, De Antonellis P, Liguori L, Benvenuto G, Magliulo D, Alonzi A, Turino C, Attanasio C, Damiani V, Bello AM, Vitiello F, Pasquinelli R, Terracciano L, Federico A, Fusco A, Freeman J, Dale TC, Decraene C, Chiappetta G, Piantedosi F, Calabrese C, Zollo M (2014b) H-Prune through GSK-3beta interaction sustains canonical WNT/beta-catenin signaling enhancing cancer progression in NSCLC. Oncotarget 5:5736–5749

    PubMed Central  PubMed  Google Scholar 

  • Chang DD, Wong C, Smith H, Liu J (1997) ICAP-1, a novel beta1 integrin cytoplasmic domain-associated protein, binds to a conserved and functionally important NPXY sequence motif of beta1 integrin. J Cell Biol 138:1149–1157

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chang DD, Hoang BQ, Liu J, Springer TA (2002) Molecular basis for interaction between Icap1 alpha PTB domain and beta 1 integrin. J Biol Chem 277:8140–8145

    Article  CAS  PubMed  Google Scholar 

  • Chen P, Murphy-Ullrich JE, Wells A (1996) A role for gelsolin in actuating epidermal growth factor receptor-mediated cell motility. J Cell Biol 134:689–698

    Article  CAS  PubMed  Google Scholar 

  • Cherfils J, Zeghouf M (2013) Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol Rev 93:269–309

    Article  CAS  PubMed  Google Scholar 

  • Cook DR, Rossman KL, Der CJ (2013) Rho guanine nucleotide exchange factors: regulators of Rho GTPase activity in development and disease. Oncogene

  • Cordenonsi M, Dupont S, Maretto S, Insinga A, Imbriano C, Piccolo S (2003) Links between tumor suppressors: p53 is required for TGF-beta gene responses by cooperating with Smads. Cell 113:301–314

    Article  CAS  PubMed  Google Scholar 

  • Curtis CD, Likhite VS, McLeod IX, Yates JR, Nardulli AM (2007) Interaction of the tumor metastasis suppressor nonmetastatic protein 23 homologue H1 and estrogen receptor alpha alters estrogen-responsive gene expression. Cancer Res 67:10600–10607

    Article  CAS  PubMed  Google Scholar 

  • D’Angelo A, Garzia L, Andre A, Carotenuto P, Aglio V, Guardiola O, Arrigoni G, Cossu A, Palmieri G, Aravind L, Zollo M (2004) Prune cAMP phosphodiesterase binds nm23-H1 and promotes cancer metastasis. Cancer Cell 5:137–149

    Article  PubMed  Google Scholar 

  • De Corte V, Bruyneel E, Boucherie C, Mareel M, Vandekerckhove J, Gettemans J (2002) Gelsolin-induced epithelial cell invasion is dependent on Ras-Rac signaling. EMBO J 21:6781–6790

    Article  PubMed Central  PubMed  Google Scholar 

  • De Lange T (2005) Telomere-related genome instability in cancer. Cold Spring Harb Symp Quant Biol 70:197–204

    Article  PubMed  Google Scholar 

  • de Lange T (2006) Lasker Laurels for telomerase. Cell 126:1017–1020

    Article  PubMed  Google Scholar 

  • del Vecchio MT, Tripodi SA, Arcuri F, Pergola L, Hako L, Vatti R, Cintorino M (2000) Macrophage migration inhibitory factor in prostatic adenocarcinoma: correlation with tumor grading and combination endocrine treatment-related changes. Prostate 45:51–57

    Article  PubMed  Google Scholar 

  • Dickson RB, Stancel GM (2000) Estrogen receptor-mediated processes in normal and cancer cells. J Natl Cancer Inst Monogr 27:135–145

    Article  CAS  PubMed  Google Scholar 

  • Evers EE, van der Kammen RA, ten Klooster JP, Collard JG (2000a) Rho-like GTPases in tumor cell invasion. Methods Enzymol 325:403–415

    Article  CAS  PubMed  Google Scholar 

  • Evers EE, Zondag GC, Malliri A, Price LS, ten Klooster JP, van der Kammen RA, Collard JG (2000b) Rho family proteins in cell adhesion and cell migration. Eur J Cancer 36:1269–1274

    Article  CAS  PubMed  Google Scholar 

  • Fancsalszky L, Monostori E, Farkas Z, Pourkarimi E, Masoudi N, Hargitai B, Bosnar MH, Dezeljin M, Zsakai A, Vellai T, Mehta A, Takacs-Vellai K (2014) NDK-1, the homolog of NM23-H1/H2 regulates cell migration and apoptotic engulfment in C. elegans. PLoS One 9:e92687

    Article  PubMed Central  PubMed  Google Scholar 

  • Ferguson SM, De Camilli P (2012) Dynamin, a membrane-remodelling GTPase. Nat Rev Mol Cell Biol 13:75–88

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fingerle-Rowson G, Petrenko O, Metz CN, Forsthuber TG, Mitchell R, Huss R, Moll U, Muller W, Bucala R (2003) The p53-dependent effects of macrophage migration inhibitory factor revealed by gene targeting. Proc Natl Acad Sci U S A 100:9354–9359

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fournier HN, Dupe-Manet S, Bouvard D, Lacombe ML, Marie C, Block MR, Albiges-Rizo C (2002) Integrin cytoplasmic domain-associated protein 1alpha (ICAP-1alpha) interacts directly with the metastasis suppressor nm23-H2, and both proteins are targeted to newly formed cell adhesion sites upon integrin engagement. J Biol Chem 277:20895–20902

    Article  CAS  PubMed  Google Scholar 

  • Fujita H, Okada F, Hamada J, Hosokawa M, Moriuchi T, Koya RC, Kuzumaki N (2001) Gelsolin functions as a metastasis suppressor in B16-BL6 mouse melanoma cells and requirement of the carboxyl-terminus for its effect. Int J Cancer J Int Cancer 93:773–780

    Article  CAS  Google Scholar 

  • Gallo D, Ferlini C, Scambia G (2010) The epithelial-mesenchymal transition and the estrogen-signaling in ovarian cancer. Curr Drug Targets 11:474–481

    Article  CAS  PubMed  Google Scholar 

  • Gottlieb E, Vousden KH (2010) p53 regulation of metabolic pathways. Cold Spring Harbor Perspect Biol 2:a001040

    Google Scholar 

  • Hartsough MT, Morrison DK, Salerno M, Palmieri D, Ouatas T, Mair M, Patrick J, Steeg PS (2002) Nm23-H1 metastasis suppressor phosphorylation of kinase suppressor of Ras via a histidine protein kinase pathway. J Biol Chem 277:32389–32399

    Article  CAS  PubMed  Google Scholar 

  • Hsu T (2012) Complex cellular functions of the von Hippel-Lindau tumor suppressor gene: insights from model organisms. Oncogene 31:2247–2257

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hsu T, Adereth Y, Kose N, Dammai V (2006) Endocytic function of von Hippel-Lindau tumor suppressor protein regulates surface localization of fibroblast growth factor receptor 1 and cell motility. J Biol Chem 281:12069–12080

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Iwashita S, Fujii M, Mukai H, Ono Y, Miyamoto M (2004) Lbc proto-oncogene product binds to and could be negatively regulated by metastasis suppressor nm23-H2. Biochem Biophys Res Commun 320:1063–1068

    Article  CAS  PubMed  Google Scholar 

  • Jaffe AB, Hall A (2002) Rho GTPases in transformation and metastasis. Adv Cancer Res 84:57–80

    Article  CAS  PubMed  Google Scholar 

  • Jung H, Seong HA, Ha H (2007) NM23-H1 tumor suppressor and its interacting partner STRAP activate p53 function. J Biol Chem 282:35293–35307

    Article  CAS  PubMed  Google Scholar 

  • Kar A, Saha D, Purohit G, Singh A, Kumar P, Yadav VK, Kumar P, Thakur RK, Chowdhury S (2012) Metastases suppressor NME2 associates with telomere ends and telomerase and reduces telomerase activity within cells. Nucleic Acids Res 40:2554–2565

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kleemann R, Hausser A, Geiger G, Mischke R, Burger-Kentischer A, Flieger O, Johannes FJ, Roger T, Calandra T, Kapurniotu A, Grell M, Finkelmeier D, Brunner H, Bernhagen J (2000) Intracellular action of the cytokine MIF to modulate AP-1 activity and the cell cycle through Jab1. Nature 408:211–216

    Article  CAS  PubMed  Google Scholar 

  • Krishnan KS, Rikhy R, Rao S, Shivalkar M, Mosko M, Narayanan R, Etter P, Estes PS, Ramaswami M (2001) Nucleoside diphosphate kinase, a source of GTP, is required for dynamin-dependent synaptic vesicle recycling. Neuron 30:197–210

    Article  CAS  PubMed  Google Scholar 

  • Lader AS, Lee JJ, Cicchetti G, Kwiatkowski DJ (2005) Mechanisms of gelsolin-dependent and -independent EGF-stimulated cell motility in a human lung epithelial cell line. Exp Cell Res 307:153–163

    Article  CAS  PubMed  Google Scholar 

  • Lin CH, Dammai V, Adryan B, Hsu T (2014) Interaction between Nm23 and the tumor suppressor VHL. Naunyn-Schmiedeberg’s archives of pharmacology

  • Mack NA, Whalley HJ, Castillo-Lluva S, Malliri A (2011) The diverse roles of Rac signaling in tumorigenesis. Cell Cycle 10:1571–1581

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Malliri A, Collard JG (2003) Role of Rho-family proteins in cell adhesion and cancer. Curr Opin Cell Biol 15:583–589

    Article  CAS  PubMed  Google Scholar 

  • Marino N, Marshall JC, Steeg PS (2011) Protein-protein interactions: a mechanism regulating the anti-metastatic properties of Nm23-H1. Naunyn Schmiedeberg’s Arch Pharmacol 384:351–362

    Article  CAS  Google Scholar 

  • Marino N, Marshall JC, Collins JW, Zhou M, Qian Y, Veenstra T, Steeg PS (2013) Nm23-h1 binds to gelsolin and inactivates its actin-severing capacity to promote tumor cell motility and metastasis. Cancer Res 73:5949–5962

    Article  CAS  PubMed  Google Scholar 

  • Masoudi N, Fancsalszky L, Pourkarimi E, Vellai T, Alexa A, Remenyi A, Gartner A, Mehta A, Takacs-Vellai K (2013) The NM23-H1/H2 homolog NDK-1 is required for full activation of Ras signaling in C. elegans. Development 140:3486–3495

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Meyer-Siegler K (2000) Increased stability of macrophage migration inhibitory factor (MIF) in DU-145 prostate cancer cells. J Interf Cytokine Res: Off J Int Soc Interf Cytokine Res 20:769–778

    Article  CAS  Google Scholar 

  • Mitchell RA, Bucala R (2000) Tumor growth-promoting properties of macrophage migration inhibitory factor (MIF). Semin Cancer Biol 10:359–366

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto M, Iwashita S, Yamaguchi S, Ono Y (2009) Role of nm23 in the regulation of cell shape and migration via Rho family GTPase signals. Mol Cell Biochem 329:175–179

    Article  CAS  PubMed  Google Scholar 

  • Mo Y, Midorikawa K, Zhang Z, Zhou X, Ma N, Huang G, Hiraku Y, Oikawa S, Murata M (2012) Promoter hypermethylation of Ras-related GTPase gene RRAD inactivates a tumor suppressor function in nasopharyngeal carcinoma. Cancer Lett 323:147–154

    Article  CAS  PubMed  Google Scholar 

  • Moll UM, Wolff S, Speidel D, Deppert W (2005) Transcription-independent pro-apoptotic functions of p53. Curr Opin Cell Biol 17:631–636

    Article  CAS  PubMed  Google Scholar 

  • Muller PA, Caswell PT, Doyle B, Iwanicki MP, Tan EH, Karim S, Lukashchuk N, Gillespie DA, Ludwig RL, Gosselin P, Cromer A, Brugge JS, Sansom OJ, Norman JC, Vousden KH (2009) Mutant p53 drives invasion by promoting integrin recycling. Cell 139:1327–1341

    Article  PubMed  Google Scholar 

  • Murakami M, Lan K, Subramanian C, Robertson ES (2005) Epstein-Barr virus nuclear antigen 1 interacts with Nm23-H1 in lymphoblastoid cell lines and inhibits its ability to suppress cell migration. J Virol 79:1559–1568

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Murakami M, Meneses PI, Knight JS, Lan K, Kaul R, Verma SC, Robertson ES (2008a) Nm23-H1 modulates the activity of the guanine exchange factor Dbl-1. Int J Cancer J Int Cancer 123:500–510

    Article  CAS  Google Scholar 

  • Murakami M, Meneses PI, Lan K, Robertson ES (2008b) The suppressor of metastasis Nm23-H1 interacts with the Cdc42 Rho family member and the pleckstrin homology domain of oncoprotein Dbl-1 to suppress cell migration. Cancer Biol Ther 7:677–688

    Article  CAS  PubMed  Google Scholar 

  • Nosaka K, Kawahara M, Masuda M, Satomi Y, Nishino H (1998) Association of nucleoside diphosphate kinase nm23-H2 with human telomeres. Biochem Biophys Res Commun 243:342–348

    Article  CAS  PubMed  Google Scholar 

  • Ogawa H, Nishihira J, Sato Y, Kondo M, Takahashi N, Oshima T, Todo S (2000) An antibody for macrophage migration inhibitory factor suppresses tumour growth and inhibits tumour-associated angiogenesis. Cytokine 12:309–314

    Article  CAS  PubMed  Google Scholar 

  • Otsuki Y, Tanaka M, Yoshii S, Kawazoe N, Nakaya K, Sugimura H (2001) Tumor metastasis suppressor nm23H1 regulates Rac1 GTPase by interaction with Tiam1. Proc Natl Acad Sci U S A 98:4385–4390

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Palacios F, Price L, Schweitzer J, Collard JG, D’Souza-Schorey C (2001) An essential role for ARF6-regulated membrane traffic in adherens junction turnover and epithelial cell migration. EMBO J 20:4973–4986

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Palacios F, Schweitzer JK, Boshans RL, D’Souza-Schorey C (2002) ARF6-GTP recruits Nm23-H1 to facilitate dynamin-mediated endocytosis during adherens junctions disassembly. Nat Cell Biol 4:929–936

    Article  CAS  PubMed  Google Scholar 

  • Parker HR, Li Z, Sheinin H, Lauzon G, Pasdar M (1998) Plakoglobin induces desmosome formation and epidermoid phenotype in N-cadherin-expressing squamous carcinoma cells deficient in plakoglobin and E-cadherin. Cell Motil Cytoskeleton 40:87–100

    Article  CAS  PubMed  Google Scholar 

  • Polanski R, Warburton HE, Ray-Sinha A, Devling T, Pakula H, Rubbi CP, Vlatkovic N, Boyd MT (2010) MDM2 promotes cell motility and invasiveness through a RING-finger independent mechanism. FEBS Lett 584:4695–4702

    Article  CAS  PubMed  Google Scholar 

  • Polanski R, Maguire M, Nield PC, Jenkins RE, Park BK, Krawczynska K, Devling T, Ray-Sinha A, Rubbi CP, Vlatkovic N, Boyd MT (2011) MDM2 interacts with NME2 (non-metastatic cells 2, protein) and suppresses the ability of NME2 to negatively regulate cell motility. Carcinogenesis 32:1133–1142

    Article  CAS  PubMed  Google Scholar 

  • Rayner K, Chen YX, Hibbert B, White D, Miller H, Postel EH, O’Brien ER (2008) Discovery of NM23-H2 as an estrogen receptor beta-associated protein: role in estrogen-induced gene transcription and cell migration. J Steroid Biochem Mol Biol 108:72–81

    Article  CAS  PubMed  Google Scholar 

  • Reymond A, Volorio S, Merla G, Al-Maghtheh M, Zuffardi O, Bulfone A, Ballabio A, Zollo M (1999) Evidence for interaction between human PRUNE and nm23-H1 NDPKinase. Oncogene 18:7244–7252

    Article  CAS  PubMed  Google Scholar 

  • Saha A, Robertson ES (2011) Functional modulation of the metastatic suppressor Nm23-H1 by oncogenic viruses. FEBS Lett 585:3174–3184

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schmid SL, Frolov VA (2011) Dynamin: functional design of a membrane fission catalyst. Annu Rev Cell Dev Biol 27:79–105

    Article  CAS  PubMed  Google Scholar 

  • Seong HA, Jung H, Ha H (2007) NM23-H1 tumor suppressor physically interacts with serine-threonine kinase receptor-associated protein, a transforming growth factor-beta (TGF-beta) receptor-interacting protein, and negatively regulates TGF-beta signaling. J Biol Chem 282:12075–12096

    Article  CAS  PubMed  Google Scholar 

  • Sever S, Chang J, Gu C (2013) Dynamin rings: not just for fission. Traffic 14:1194–1199

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Simcha I, Shtutman M, Salomon D, Zhurinsky J, Sadot E, Geiger B, Ben-Ze’ev A (1998) Differential nuclear translocation and transactivation potential of beta-catenin and plakoglobin. J Cell Biol 141:1433–1448

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Steeg PS, Zollo M, Wieland T (2011) A critical evaluation of biochemical activities reported for the nucleoside diphosphate kinase/Nm23/Awd family proteins: opportunities and missteps in understanding their biological functions. Naunyn Schmiedeberg’s Arch Pharmacol 384:331–339

    Article  CAS  Google Scholar 

  • Sterpetti P, Hack AA, Bashar MP, Park B, Cheng SD, Knoll JH, Urano T, Feig LA, Toksoz D (1999) Activation of the Lbc Rho exchange factor proto-oncogene by truncation of an extended C terminus that regulates transformation and targeting. Mol Cell Biol 19:1334–1345

    CAS  PubMed Central  PubMed  Google Scholar 

  • Subramanian C, Cotter MA 2nd, Robertson ES (2001) Epstein-Barr virus nuclear protein EBNA-3C interacts with the human metastatic suppressor Nm23-H1: a molecular link to cancer metastasis. Nat Med 7:350–355

    Article  CAS  PubMed  Google Scholar 

  • Sun HQ, Yamamoto M, Mejillano M, Yin HL (1999) Gelsolin, a multifunctional actin regulatory protein. J Biol Chem 274:33179–33182

    Article  CAS  PubMed  Google Scholar 

  • Takacs-Vellai K (2014) The metastasis suppressor Nm23 as a modulator of Ras/ERK signaling. J Mol Signal 9:4

    Article  PubMed Central  PubMed  Google Scholar 

  • Tammenkoski M, Koivula K, Cusanelli E, Zollo M, Steegborn C, Baykov AA, Lahti R (2008) Human metastasis regulator protein H-prune is a short-chain exopolyphosphatase. Biochemistry 47:9707–9713

    Article  CAS  PubMed  Google Scholar 

  • Tanaka H, Shirkoohi R, Nakagawa K, Qiao H, Fujita H, Okada F, Hamada J, Kuzumaki S, Takimoto M, Kuzumaki N (2006) siRNA gelsolin knockdown induces epithelial-mesenchymal transition with a cadherin switch in human mammary epithelial cells. Int J Cancer J Int Cancer 118:1680–1691

    Article  CAS  Google Scholar 

  • Toksoz D, Williams DA (1994) Novel human oncogene lbc detected by transfection with distinct homology regions to signal transduction products. Oncogene 9:621–628

    CAS  PubMed  Google Scholar 

  • Vazquez A, Bond EE, Levine AJ, Bond GL (2008) The genetics of the p53 pathway, apoptosis and cancer therapy. Nat Rev Drug Discov 7:979–987

    Article  CAS  PubMed  Google Scholar 

  • Vigil D, Cherfils J, Rossman KL, Der CJ (2010) Ras superfamily GEFs and GAPs: validated and tractable targets for cancer therapy? Nat Rev Cancer 10:842–857

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408:307–310

    Article  CAS  PubMed  Google Scholar 

  • Vousden KH, Prives C (2009) Blinded by the light: the growing complexity of p53. Cell 137:413–431

    Article  CAS  PubMed  Google Scholar 

  • Wang SP, Wang WL, Chang YL, Wu CT, Chao YC, Kao SH, Yuan A, Lin CW, Yang SC, Chan WK, Li KC, Hong TM, Yang PC (2009) p53 controls cancer cell invasion by inducing the MDM2-mediated degradation of Slug. Nat Cell Biol 11:694–704

    Article  CAS  PubMed  Google Scholar 

  • Wieland T, Hippe HJ, Ludwig K, Zhou XB, Korth M, Klumpp S (2010) Reversible histidine phosphorylation in mammalian cells: a teeter-totter formed by nucleoside diphosphate kinase and protein histidine phosphatase 1. Methods Enzymol 471:379–402

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Tseng YH, Kantor JD, Rhodes CJ, Zetter BR, Moyers JS, Kahn CR (1999) Interaction of the Ras-related protein associated with diabetes rad and the putative tumor metastasis suppressor NM23 provides a novel mechanism of GTPase regulation. Proc Natl Acad Sci U S A 96:14911–14918

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhurinsky J, Shtutman M, Ben-Ze’ev A (2000) Differential mechanisms of LEF/TCF family-dependent transcriptional activation by beta-catenin and plakoglobin. Mol Cell Biol 20:4238–4252

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark T. Boyd.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vlatković, N., Chang, SH. & Boyd, M.T. Janus-faces of NME–oncoprotein interactions. Naunyn-Schmiedeberg's Arch Pharmacol 388, 175–187 (2015). https://doi.org/10.1007/s00210-014-1062-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-014-1062-5

Keywords

Navigation