Skip to main content
Top
Published in: BMC Cancer 1/2018

Open Access 01-12-2018 | Research article

Aggregation of lipid rafts activates c-met and c-Src in non-small cell lung cancer cells

Authors: Juan Zeng, Heying Zhang, Yonggang Tan, Cheng Sun, Yusi Liang, Jinyang Yu, Huawei Zou

Published in: BMC Cancer | Issue 1/2018

Login to get access

Abstract

Background

Activation of c-Met, a receptor tyrosine kinase, induces radiation therapy resistance in non-small cell lung cancer (NSCLC). The activated residual of c-Met is located in lipid rafts (Duhon et al. Mol Carcinog 49:739-49, 2010). Therefore, we hypothesized that disturbing the integrity of lipid rafts would restrain the activation of the c-Met protein and reverse radiation resistance in NSCLC. In this study, a series of experiments was performed to test this hypothesis.

Methods

NSCLC A549 and H1993 cells were incubated with methyl-β-cyclodextrin (MβCD), a lipid raft inhibitor, at different concentrations for 1 h before the cells were X-ray irradiated. The following methods were used: clonogenic (colony-forming) survival assays, flow cytometry (for cell cycle and apoptosis analyses), immunofluorescence microscopy (to show the distribution of proteins in lipid rafts), Western blotting, and biochemical lipid raft isolation (purifying lipid rafts to show the distribution of proteins in lipid rafts).

Results

Our results showed that X-ray irradiation induced the aggregation of lipid rafts in A549 cells, activated c-Met and c-Src, and induced c-Met and c-Src clustering to lipid rafts. More importantly, MβCD suppressed the proliferation of A549 and H1993 cells, and the combination of MβCD and radiation resulted in additive increases in A549 and H1993 cell apoptosis. Destroying the integrity of lipid rafts inhibited the aggregation of c-Met and c-Src to lipid rafts and reduced the expression of phosphorylated c-Met and phosphorylated c-Src in lipid rafts.

Conclusions

X-ray irradiation induced the aggregation of lipid rafts and the clustering of c-Met and c-Src to lipid rafts through both lipid raft-dependent and lipid raft-independent mechanisms. The lipid raft-dependent activation of c-Met and its downstream pathways played an important role in the development of radiation resistance in NSCLC cells mediated by c-Met. Further studies are still required to explore the molecular mechanisms of the activation of c-Met and c-Src in lipid rafts induced by radiation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Patra SK, Bettuzzi S. Epigenetic DNA methylation regulation of genes coding for lipid raft-associated components: a role for raft proteins in cell transformation and cancer progression. Oncol Rep. 2007;17:1279–90.PubMed Patra SK, Bettuzzi S. Epigenetic DNA methylation regulation of genes coding for lipid raft-associated components: a role for raft proteins in cell transformation and cancer progression. Oncol Rep. 2007;17:1279–90.PubMed
2.
go back to reference Brown DA, London E. Structure and function of sphingolipids- and cholesterol-rich membrane rafts. J Biol Chem. 2000;275:17221–4.CrossRefPubMed Brown DA, London E. Structure and function of sphingolipids- and cholesterol-rich membrane rafts. J Biol Chem. 2000;275:17221–4.CrossRefPubMed
3.
go back to reference Duhon D, Bigelow RLH, Coleman DT, Steffan JJ, Yu C, Langston W, et al. The polyphenol epigallocatechin-3-gallate affects lipid rafts to block activation of the c-Metreceptor inprostate cancer cells. Mol Carcinog. 2010;49:739–49.PubMed Duhon D, Bigelow RLH, Coleman DT, Steffan JJ, Yu C, Langston W, et al. The polyphenol epigallocatechin-3-gallate affects lipid rafts to block activation of the c-Metreceptor inprostate cancer cells. Mol Carcinog. 2010;49:739–49.PubMed
4.
go back to reference Coleman DT, Bigelow R, Cardelli JA. Inhibition of fatty acid synthase by luteolin post-transcriptionally down-regulates c-met expression independent of proteosomal/lysosomal degradation. Mol Cancer Ther. 2009;8(1):214–24.CrossRefPubMedPubMedCentral Coleman DT, Bigelow R, Cardelli JA. Inhibition of fatty acid synthase by luteolin post-transcriptionally down-regulates c-met expression independent of proteosomal/lysosomal degradation. Mol Cancer Ther. 2009;8(1):214–24.CrossRefPubMedPubMedCentral
6.
go back to reference Shimm DS, Miller PR, Lin T. Effects of v-src oncogene activation on radiation sensitivity in drug-sensitive and in multidrug-resistant rat fibroblasts. Radiat Res. 1992;129(2):149–56.CrossRefPubMed Shimm DS, Miller PR, Lin T. Effects of v-src oncogene activation on radiation sensitivity in drug-sensitive and in multidrug-resistant rat fibroblasts. Radiat Res. 1992;129(2):149–56.CrossRefPubMed
7.
go back to reference Radhakrishnan A, Anderson TG, McConnell HM. Condensed complexes, rafts, and the chemical activity of cholesterol in membranes. Proc Natl Acad Sci U S A. 2000;97:12422–7.CrossRefPubMedPubMedCentral Radhakrishnan A, Anderson TG, McConnell HM. Condensed complexes, rafts, and the chemical activity of cholesterol in membranes. Proc Natl Acad Sci U S A. 2000;97:12422–7.CrossRefPubMedPubMedCentral
8.
go back to reference Franken NA, Rodermond HM, Stap J, Haveman J, van BC. Clonogenic assay of cells in vitro. Nat Protoc. 2006;1(5):2315–9.CrossRefPubMed Franken NA, Rodermond HM, Stap J, Haveman J, van BC. Clonogenic assay of cells in vitro. Nat Protoc. 2006;1(5):2315–9.CrossRefPubMed
9.
go back to reference Bigelow RLH, Cardelli JA. The green tea catechins, (−)-Epigallocatechin-3-gallate (EGCG) and (−)-Epicatechin-3-gallate (ECG), inhibit HGF/met signaling in immortalized and tumorigenic breast epithelial cells. Oncogene. 2006;25:1922–30.CrossRefPubMed Bigelow RLH, Cardelli JA. The green tea catechins, (−)-Epigallocatechin-3-gallate (EGCG) and (−)-Epicatechin-3-gallate (ECG), inhibit HGF/met signaling in immortalized and tumorigenic breast epithelial cells. Oncogene. 2006;25:1922–30.CrossRefPubMed
10.
go back to reference Macdonald JL, Pike LJ. A simplified method for the preparation of detergent-free lipid rafts. J Lipid Res. 2005;46:1061–7.CrossRefPubMed Macdonald JL, Pike LJ. A simplified method for the preparation of detergent-free lipid rafts. J Lipid Res. 2005;46:1061–7.CrossRefPubMed
11.
go back to reference Song KS, Li S, Okamoto T, Quilliam LA, Sargiacomo M, Lisanti MP. Co-purification and direct interaction of Ras with caveolin, an integral membrane protein of caveolae microdomains. Detergent-free purification of caveolae microdomains. J Biol Chem. 1996;271:9690–7.CrossRefPubMed Song KS, Li S, Okamoto T, Quilliam LA, Sargiacomo M, Lisanti MP. Co-purification and direct interaction of Ras with caveolin, an integral membrane protein of caveolae microdomains. Detergent-free purification of caveolae microdomains. J Biol Chem. 1996;271:9690–7.CrossRefPubMed
12.
go back to reference Yancey PG, Rodrigueza WV, Kilsdonk EP, Stoudt GW, Johnson WJ, Phillips MC, et al. Cellular cholesterol efflux mediated by cyclodextrins. Demonstration of kinetic pools and mechanism of efflux. J Biol Chem. 1996;271:16026–34.CrossRefPubMed Yancey PG, Rodrigueza WV, Kilsdonk EP, Stoudt GW, Johnson WJ, Phillips MC, et al. Cellular cholesterol efflux mediated by cyclodextrins. Demonstration of kinetic pools and mechanism of efflux. J Biol Chem. 1996;271:16026–34.CrossRefPubMed
13.
go back to reference Begg AC, Stewart FA, Vens C. Strategies to improve radiotherapy with targeted drugs. Nat Rev Cancer. 2011;11(4):239–53.CrossRefPubMed Begg AC, Stewart FA, Vens C. Strategies to improve radiotherapy with targeted drugs. Nat Rev Cancer. 2011;11(4):239–53.CrossRefPubMed
14.
go back to reference Yu H, Li X, Sun S, Gao X, Zhou D. C-met inhibitor SU11274 enhances the response of the prostate cancer cell line DU145 to ionizing radiation. Biochem Biophys Res Commun. 2012;427:659–65.CrossRefPubMed Yu H, Li X, Sun S, Gao X, Zhou D. C-met inhibitor SU11274 enhances the response of the prostate cancer cell line DU145 to ionizing radiation. Biochem Biophys Res Commun. 2012;427:659–65.CrossRefPubMed
15.
go back to reference Li B, Torossian A, Sun Y, Du R, Dicker AP, Lu B. A novel selective c-met inhibitor with radiosensitizing effects. Int J Radiat Oncol Biol Phys. 2012;84:e525–e31.CrossRefPubMed Li B, Torossian A, Sun Y, Du R, Dicker AP, Lu B. A novel selective c-met inhibitor with radiosensitizing effects. Int J Radiat Oncol Biol Phys. 2012;84:e525–e31.CrossRefPubMed
16.
go back to reference Buchanan IM, Scott T, Tandle AT, Burgan WE, Burgess TL, Tofilon PJ, et al. Radiosensitization of glioma cells by modulation of met signalling with the hepatocyte growth factor neutralizing antibody. AMG102. J Cell Mol Med. 2011;15:1999–2006.CrossRefPubMed Buchanan IM, Scott T, Tandle AT, Burgan WE, Burgess TL, Tofilon PJ, et al. Radiosensitization of glioma cells by modulation of met signalling with the hepatocyte growth factor neutralizing antibody. AMG102. J Cell Mol Med. 2011;15:1999–2006.CrossRefPubMed
17.
go back to reference Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF. Met, metastasis, motility and more. Nat Rev Mol Cell Biol. 2003;4(12):915–25.CrossRefPubMed Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF. Met, metastasis, motility and more. Nat Rev Mol Cell Biol. 2003;4(12):915–25.CrossRefPubMed
18.
go back to reference De Bacco F, Luraghi P, Medico E, Reato G, Girolami F, Perera T, et al. Induction of MET by ionizing radiation and its role in radioresistance and invasive growth of cancer. J Natl Cancer Inst. 2011;103:645–61.CrossRefPubMed De Bacco F, Luraghi P, Medico E, Reato G, Girolami F, Perera T, et al. Induction of MET by ionizing radiation and its role in radioresistance and invasive growth of cancer. J Natl Cancer Inst. 2011;103:645–61.CrossRefPubMed
19.
go back to reference Qian LW, Mizumoto K, Inadome N, Nagai E, Sato N, Matsumoto K, et al. Radiation stimulates HGF receptor/c-met expression that leads to amplifying cellular response to HGF stimulation via upregulated receptor tyrosine phosphorylation and MAP kinase activity in pancreatic cancer cells. Int J Cancer. 2003;104:542–9.CrossRefPubMed Qian LW, Mizumoto K, Inadome N, Nagai E, Sato N, Matsumoto K, et al. Radiation stimulates HGF receptor/c-met expression that leads to amplifying cellular response to HGF stimulation via upregulated receptor tyrosine phosphorylation and MAP kinase activity in pancreatic cancer cells. Int J Cancer. 2003;104:542–9.CrossRefPubMed
20.
go back to reference Fan S, Wang JA, Yuan RQ, Rockwell S, Andres J, Zlatapolskiy A, et al. Scatter factor protects epithelial and carcinoma cells against apoptosis induced by DNA-damaging agents. Oncogene. 1998;17:131–41.CrossRefPubMed Fan S, Wang JA, Yuan RQ, Rockwell S, Andres J, Zlatapolskiy A, et al. Scatter factor protects epithelial and carcinoma cells against apoptosis induced by DNA-damaging agents. Oncogene. 1998;17:131–41.CrossRefPubMed
21.
go back to reference Nakamura Y, Niki T, Goto A, Morikawa T, Miyazawa K, Nakajima J, et al. C-met activation in lung adenocarcinoma tissues: an immunohistochemical analysis. Cancer Sci. 2007;98:1006–13.CrossRefPubMed Nakamura Y, Niki T, Goto A, Morikawa T, Miyazawa K, Nakajima J, et al. C-met activation in lung adenocarcinoma tissues: an immunohistochemical analysis. Cancer Sci. 2007;98:1006–13.CrossRefPubMed
22.
go back to reference Masuya D, Huang C, Liu D, Nakashima T, Kameyama K, Haba R, et al. The tumour-stromal interaction between intratumoral c-met and stromal hepatocyte growth factor associated with tumour growth and prognosis in non-small-cell lung cancer patients. Br J Cancer. 2004;90:1555–62.CrossRefPubMedPubMedCentral Masuya D, Huang C, Liu D, Nakashima T, Kameyama K, Haba R, et al. The tumour-stromal interaction between intratumoral c-met and stromal hepatocyte growth factor associated with tumour growth and prognosis in non-small-cell lung cancer patients. Br J Cancer. 2004;90:1555–62.CrossRefPubMedPubMedCentral
24.
go back to reference Kim MJ, Byun JY, Yun CH, Park IC, Lee KH, Lee SJ. C-Src-p38 mitogen-activated protein kinase signaling is required for Akt activation in response to ionizing radiation. Mol Cancer Res. 2008;6(12):1872–80.CrossRefPubMed Kim MJ, Byun JY, Yun CH, Park IC, Lee KH, Lee SJ. C-Src-p38 mitogen-activated protein kinase signaling is required for Akt activation in response to ionizing radiation. Mol Cancer Res. 2008;6(12):1872–80.CrossRefPubMed
25.
go back to reference Ishizawar R, Parsons SJ. C-Src and cooperating partners in human cancer. Cancer Cell. 2004;6(3):209–14.CrossRefPubMed Ishizawar R, Parsons SJ. C-Src and cooperating partners in human cancer. Cancer Cell. 2004;6(3):209–14.CrossRefPubMed
26.
go back to reference Funakoshi-Tago M, Tago K, Andoh K, Sonoda Y, Tominaga S, Kasahara T. Functional role of c-Src in IL-1-induced NF-kappa B activation: c-Src is a component of the IKK complex. J Biochem. 2005;137(2):189–97.CrossRefPubMed Funakoshi-Tago M, Tago K, Andoh K, Sonoda Y, Tominaga S, Kasahara T. Functional role of c-Src in IL-1-induced NF-kappa B activation: c-Src is a component of the IKK complex. J Biochem. 2005;137(2):189–97.CrossRefPubMed
27.
go back to reference Pike LJ. Rafts defined: a report on the keystone symposium on lipid rafts and cell function. J Lipid Res. 2006;47:1597–8.CrossRefPubMed Pike LJ. Rafts defined: a report on the keystone symposium on lipid rafts and cell function. J Lipid Res. 2006;47:1597–8.CrossRefPubMed
28.
29.
go back to reference Algeciras-Schimnich A, Shen L, Barnhart BC, Murmann AE, Burkhardt JK, Peter ME. Molecular ordering of the initial signaling events of CD95. Mol Cell Biol. 2002;22:207–20.CrossRefPubMedPubMedCentral Algeciras-Schimnich A, Shen L, Barnhart BC, Murmann AE, Burkhardt JK, Peter ME. Molecular ordering of the initial signaling events of CD95. Mol Cell Biol. 2002;22:207–20.CrossRefPubMedPubMedCentral
30.
go back to reference Bang B, Gniadecki R, Gajkowska B. Disruption of lipid rafts causes apoptotic cell death in HaCaT keratinocytes. Exp Dermatol. 2005;14:266–72.CrossRefPubMed Bang B, Gniadecki R, Gajkowska B. Disruption of lipid rafts causes apoptotic cell death in HaCaT keratinocytes. Exp Dermatol. 2005;14:266–72.CrossRefPubMed
31.
go back to reference Li HY, Appelbaum FR, Willman CL, Zager RA, Banker DE. Cholesterol-modulating agents kill acute myeloid leukemia cells and sensitize them to therapeutics by blocking adaptive cholesterol responses. Blood. 2003;101:3628–34.CrossRefPubMed Li HY, Appelbaum FR, Willman CL, Zager RA, Banker DE. Cholesterol-modulating agents kill acute myeloid leukemia cells and sensitize them to therapeutics by blocking adaptive cholesterol responses. Blood. 2003;101:3628–34.CrossRefPubMed
32.
go back to reference Arcaro A, Aubert M, Espinosa del Hierro ME, Khanzada UK, Angelidou S, Tetley TD, et al. Critical role for lipid raft-associated Src kinases in activation of PI3K-Akt signalling. Cell Signal. 2007;19:1081–92.CrossRefPubMed Arcaro A, Aubert M, Espinosa del Hierro ME, Khanzada UK, Angelidou S, Tetley TD, et al. Critical role for lipid raft-associated Src kinases in activation of PI3K-Akt signalling. Cell Signal. 2007;19:1081–92.CrossRefPubMed
Metadata
Title
Aggregation of lipid rafts activates c-met and c-Src in non-small cell lung cancer cells
Authors
Juan Zeng
Heying Zhang
Yonggang Tan
Cheng Sun
Yusi Liang
Jinyang Yu
Huawei Zou
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2018
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-018-4501-8

Other articles of this Issue 1/2018

BMC Cancer 1/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine