Skip to main content
Top
Published in: BMC Cancer 1/2018

Open Access 01-12-2018 | Research article

DNA methylation signatures of breast cancer in peripheral T-cells

Authors: Surabhi Parashar, David Cheishvili, Niaz Mahmood, Ani Arakelian, Imrana Tanvir, Haseeb Ahmed Khan, Richard Kremer, Catalin Mihalcioiu, Moshe Szyf, Shafaat A. Rabbani

Published in: BMC Cancer | Issue 1/2018

Login to get access

Abstract

Background

Immune surveillance acts as a defense mechanism in cancer, and its disruption is involved in cancer progression. DNA methylation reflects the phenotypic identity of cells and recent data suggested that DNA methylation profiles of T cells and peripheral blood mononuclear cells (PBMC) are altered in cancer progression.

Methods

We enrolled 19 females with stage 1 and 2, nine with stage 3 and 4 and 9 age matched healthy women. T cells were isolated from peripheral blood and extracted DNA was subjected to Illumina 450 K DNA methylation array analysis. Raw data was analyzed by BMIQ, ChAMP and ComBat followed by validation of identified genes by pyrosequencing.

Results

Analysis of data revealed ~ 10,000 sites that correlated with breast cancer progression and established a list of 89 CG sites that were highly correlated (p < 0.01, r > 0.7, r < − 0.7) with breast cancer progression. The vast majority of these sites were hypomethylated and enriched in genes with functions in the immune system.

Conclusions

The study points to the possibility of using DNA methylation signatures as a noninvasive method for early detection of breast cancer and its progression which need to be tested in clinical studies.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359-E86.CrossRef Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359-E86.CrossRef
2.
go back to reference Jones HB. On a new substance occurring in the urine of a petient with mollities ossium. Phil Trans R Soc Lond. 1848;138:55-62. Jones HB. On a new substance occurring in the urine of a petient with mollities ossium. Phil Trans R Soc Lond. 1848;138:55-62.
3.
go back to reference Ehrlich P. Über den jetzigen Stand der Karzinomforschung. Onderzoek; 1909. Ehrlich P. Über den jetzigen Stand der Karzinomforschung. Onderzoek; 1909.
4.
7.
go back to reference Jr PK, Otahal P, Klener P. Immunotherapy Approaches in Cancer Treatment. Curr Pharm Biotechnol. 2015;16(9):771-81. Jr PK, Otahal P, Klener P. Immunotherapy Approaches in Cancer Treatment. Curr Pharm Biotechnol. 2015;16(9):771-81.
8.
go back to reference Flanagan JM, et al. Gene-body hypermethylation of ATM in peripheral blood DNA of bilateral breast cancer patients. Hum Mol Genet. 2009;18(7):1332–42.CrossRefPubMedPubMedCentral Flanagan JM, et al. Gene-body hypermethylation of ATM in peripheral blood DNA of bilateral breast cancer patients. Hum Mol Genet. 2009;18(7):1332–42.CrossRefPubMedPubMedCentral
9.
go back to reference Chik F, Szyf M, Rabbani SA. Role of epigenetics in cancer initiation and progression. Adv Exp Med Biol. 2011;720:91–104.CrossRefPubMed Chik F, Szyf M, Rabbani SA. Role of epigenetics in cancer initiation and progression. Adv Exp Med Biol. 2011;720:91–104.CrossRefPubMed
11.
go back to reference Paska AV, Hudler P. Aberrant methylation patterns in cancer: a clinical view. Biochem Med (Zagreb). 2015;25(2):161–76.CrossRef Paska AV, Hudler P. Aberrant methylation patterns in cancer: a clinical view. Biochem Med (Zagreb). 2015;25(2):161–76.CrossRef
12.
go back to reference Zauri M, et al. CDA directs metabolism of epigenetic nucleosides revealing a therapeutic window in cancer. Nature. 2015;524:114-118. Zauri M, et al. CDA directs metabolism of epigenetic nucleosides revealing a therapeutic window in cancer. Nature. 2015;524:114-118.
13.
go back to reference Koestler DC, et al. Peripheral blood immune cell methylation profiles are associated with nonhematopoietic cancers. Cancer Epidemiol Biomark Prev. 2012;21(8):1293–302.CrossRef Koestler DC, et al. Peripheral blood immune cell methylation profiles are associated with nonhematopoietic cancers. Cancer Epidemiol Biomark Prev. 2012;21(8):1293–302.CrossRef
14.
go back to reference Fridley BL, et al. Methylation of leukocyte DNA and ovarian cancer: relationships with disease status and outcome. BMC Med Genet. 2014;7:21. Fridley BL, et al. Methylation of leukocyte DNA and ovarian cancer: relationships with disease status and outcome. BMC Med Genet. 2014;7:21.
15.
go back to reference Huang WY, et al. Prospective study of genomic hypomethylation of leukocyte DNA and colorectal cancer risk. Cancer Epidemiol Biomark Prev. 2012;21(11):2014–21.CrossRef Huang WY, et al. Prospective study of genomic hypomethylation of leukocyte DNA and colorectal cancer risk. Cancer Epidemiol Biomark Prev. 2012;21(11):2014–21.CrossRef
16.
go back to reference Kao WY, et al. Genome-wide identification of blood DNA methylation patterns associated with early-onset hepatocellular carcinoma development in hepatitis B carriers. Mol Carcinog. 2016;56(2):425-435. Kao WY, et al. Genome-wide identification of blood DNA methylation patterns associated with early-onset hepatocellular carcinoma development in hepatitis B carriers. Mol Carcinog. 2016;56(2):425-435.
17.
go back to reference Teschendorff AE, et al. A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data. Bioinformatics. 2013;29(2):189–96.CrossRefPubMed Teschendorff AE, et al. A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data. Bioinformatics. 2013;29(2):189–96.CrossRefPubMed
18.
go back to reference Morris TJ, et al. ChAMP: 450k chip analysis methylation pipeline. Bioinformatics. 2014;30(3):428–30.CrossRefPubMed Morris TJ, et al. ChAMP: 450k chip analysis methylation pipeline. Bioinformatics. 2014;30(3):428–30.CrossRefPubMed
19.
go back to reference Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 2007;8(1):118–27.CrossRefPubMed Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 2007;8(1):118–27.CrossRefPubMed
20.
21.
go back to reference Györffy B, et al. An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res Treat. 2010;123(3):725–31.CrossRefPubMed Györffy B, et al. An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res Treat. 2010;123(3):725–31.CrossRefPubMed
22.
go back to reference Bibikova M, et al. High density DNA methylation array with single CpG site resolution. Genomics. 2011;98(4):288–95.CrossRefPubMed Bibikova M, et al. High density DNA methylation array with single CpG site resolution. Genomics. 2011;98(4):288–95.CrossRefPubMed
23.
go back to reference Fernandez-Jimenez N, Sklias A, Ecsedi S, Cahais V, Degli-Esposti D, Jay A, Ancey PB, Woo HD, Hernandez-Vargas H, Herceg Z. Lowly methylated region analysis identifies EBF1 as a potential epigenetic modifier in breast cancer. Epigenetics. 2017:1–9. https://doi.org/10.1080/15592294.2017.1373919. [Epub ahead of print] Fernandez-Jimenez N, Sklias A, Ecsedi S, Cahais V, Degli-Esposti D, Jay A, Ancey PB, Woo HD, Hernandez-Vargas H, Herceg Z. Lowly methylated region analysis identifies EBF1 as a potential epigenetic modifier in breast cancer. Epigenetics. 2017:1–9. https://​doi.​org/​10.​1080/​15592294.​2017.​1373919. [Epub ahead of print]
24.
go back to reference Smyth GK. Limma: linear models for microarray data. In: Gentleman VCR, Dudoit S, Irizarry R, Huber W, editors. Bioinformatics and computational biology solutions using R and Bioconductor. New York: Springer; 2005. p. 397–420.CrossRef Smyth GK. Limma: linear models for microarray data. In: Gentleman VCR, Dudoit S, Irizarry R, Huber W, editors. Bioinformatics and computational biology solutions using R and Bioconductor. New York: Springer; 2005. p. 397–420.CrossRef
25.
go back to reference Vainio H, Bianchini F. IARC handbooks of cancer prevention. Iarc.Lyon, France. vol. 7: Iarc; 2002. Vainio H, Bianchini F. IARC handbooks of cancer prevention. Iarc.Lyon, France. vol. 7: Iarc; 2002.
27.
go back to reference Bonini C, Mondino A. Adoptive T-cell therapy for cancer: the era of engineered T cells. Eur J Immunol. 2015;45(9):2457-2469. Bonini C, Mondino A. Adoptive T-cell therapy for cancer: the era of engineered T cells. Eur J Immunol. 2015;45(9):2457-2469.
28.
go back to reference Sagiv-Barfi I, et al. Therapeutic antitumor immunity by checkpoint blockade is enhanced by ibrutinib, an inhibitor of both BTK and ITK. Proc Nat Acad Sci USA. 2015;112(9):E966–72.CrossRefPubMedPubMedCentral Sagiv-Barfi I, et al. Therapeutic antitumor immunity by checkpoint blockade is enhanced by ibrutinib, an inhibitor of both BTK and ITK. Proc Nat Acad Sci USA. 2015;112(9):E966–72.CrossRefPubMedPubMedCentral
29.
30.
go back to reference Nestor CE, Barrenäs F, Wang H, Lentini A, Zhang H, Bruhn S, Jörnsten R, Langston MA, Rogers G, Gustafsson M, Benson M. DNA methylation changes separate allergic patients from healthy controls and may reflect altered CD4+ T-cell population structure. PLoS Genet. 2014 Jan;10(1):e1004059.CrossRefPubMedPubMedCentral Nestor CE, Barrenäs F, Wang H, Lentini A, Zhang H, Bruhn S, Jörnsten R, Langston MA, Rogers G, Gustafsson M, Benson M. DNA methylation changes separate allergic patients from healthy controls and may reflect altered CD4+ T-cell population structure. PLoS Genet. 2014 Jan;10(1):e1004059.CrossRefPubMedPubMedCentral
31.
go back to reference Chavez-Valencia RA, Chiaroni-Clarke RC, Martino DJ, Munro JE, Allen RC, Akikusa JD, Ponsonby AL, Craig JM, Saffery R, Ellis JA. The DNA methylation landscape of CD4+ T cells in oligoarticular juvenile idiopathic arthritis. J Autoimmun. 2017; https://doi.org/10.1016/j.jaut.2017.09.010. [Epub ahead of print]. Chavez-Valencia RA, Chiaroni-Clarke RC, Martino DJ, Munro JE, Allen RC, Akikusa JD, Ponsonby AL, Craig JM, Saffery R, Ellis JA. The DNA methylation landscape of CD4+ T cells in oligoarticular juvenile idiopathic arthritis. J Autoimmun. 2017; https://​doi.​org/​10.​1016/​j.​jaut.​2017.​09.​010. [Epub ahead of print].
32.
33.
go back to reference Parashar S, et al. S-adenosylmethionine blocks osteosarcoma cells proliferation and invasion in vitro and tumor metastasis in vivo: therapeutic and diagnostic clinical applications. Cancer Med. 2015;4(5):732–44.CrossRefPubMedPubMedCentral Parashar S, et al. S-adenosylmethionine blocks osteosarcoma cells proliferation and invasion in vitro and tumor metastasis in vivo: therapeutic and diagnostic clinical applications. Cancer Med. 2015;4(5):732–44.CrossRefPubMedPubMedCentral
34.
go back to reference Stefanska B, et al. Genome-wide study of hypomethylated and induced genes in patients with liver cancer unravels novel anticancer targets. Clin Cancer Res. 2014;20(12):3118–32.CrossRefPubMed Stefanska B, et al. Genome-wide study of hypomethylated and induced genes in patients with liver cancer unravels novel anticancer targets. Clin Cancer Res. 2014;20(12):3118–32.CrossRefPubMed
35.
go back to reference Shukeir N, et al. Alteration of the methylation status of tumor-promoting genes decreases prostate cancer cell invasiveness and tumorigenesis in vitro and in vivo. Cancer Res. 2006;66(18):9202–10.CrossRefPubMed Shukeir N, et al. Alteration of the methylation status of tumor-promoting genes decreases prostate cancer cell invasiveness and tumorigenesis in vitro and in vivo. Cancer Res. 2006;66(18):9202–10.CrossRefPubMed
36.
go back to reference Anjum S, et al. A BRCA1-mutation associated DNA methylation signature in blood cells predicts sporadic breast cancer incidence and survival. Genome Med. 2014;6(6):47.CrossRefPubMedPubMedCentral Anjum S, et al. A BRCA1-mutation associated DNA methylation signature in blood cells predicts sporadic breast cancer incidence and survival. Genome Med. 2014;6(6):47.CrossRefPubMedPubMedCentral
37.
go back to reference Xu Z, et al. Epigenome-wide association study of breast cancer using prospectively collected sister study samples. J Natl Cancer Inst. 2013;105(10):694–700.CrossRefPubMedPubMedCentral Xu Z, et al. Epigenome-wide association study of breast cancer using prospectively collected sister study samples. J Natl Cancer Inst. 2013;105(10):694–700.CrossRefPubMedPubMedCentral
38.
go back to reference Severi G, et al. Epigenome-wide methylation in DNA from peripheral blood as a marker of risk for breast cancer. Breast Cancer Res Treat. 2014;148(3):665–73.CrossRefPubMed Severi G, et al. Epigenome-wide methylation in DNA from peripheral blood as a marker of risk for breast cancer. Breast Cancer Res Treat. 2014;148(3):665–73.CrossRefPubMed
39.
go back to reference Shenker NS, et al. Epigenome-wide association study in the European Prospective Investigation into Cancer and Nutrition (EPIC-Turin) identifies novel genetic loci associated with smoking. Hum Mol Genet. 2013;22(5):843–51.CrossRefPubMed Shenker NS, et al. Epigenome-wide association study in the European Prospective Investigation into Cancer and Nutrition (EPIC-Turin) identifies novel genetic loci associated with smoking. Hum Mol Genet. 2013;22(5):843–51.CrossRefPubMed
40.
go back to reference van Veldhoven K, et al. Epigenome-wide association study reveals decreased average methylation levels years before breast cancer diagnosis. Clin Epigenetics. 2015;7:67.CrossRefPubMedPubMedCentral van Veldhoven K, et al. Epigenome-wide association study reveals decreased average methylation levels years before breast cancer diagnosis. Clin Epigenetics. 2015;7:67.CrossRefPubMedPubMedCentral
41.
go back to reference Ambatipudi S, et al. DNA methylome analysis identifies accelerated epigenetic ageing associated with postmenopausal breast cancer susceptibility. Eur J Cancer. 2017;75:299–307.CrossRefPubMedPubMedCentral Ambatipudi S, et al. DNA methylome analysis identifies accelerated epigenetic ageing associated with postmenopausal breast cancer susceptibility. Eur J Cancer. 2017;75:299–307.CrossRefPubMedPubMedCentral
42.
go back to reference Conway K, Edmiston SN, Parrish E, Bryant C, Tse CK, Swift-Scanlan T, McCullough LE, Kuan PF. Breast tumor DNA methylation patterns associated with smoking in the Carolina Breast Cancer Study. Breast Cancer Res Treat. 2017;163(2):349–61.CrossRefPubMedPubMedCentral Conway K, Edmiston SN, Parrish E, Bryant C, Tse CK, Swift-Scanlan T, McCullough LE, Kuan PF. Breast tumor DNA methylation patterns associated with smoking in the Carolina Breast Cancer Study. Breast Cancer Res Treat. 2017;163(2):349–61.CrossRefPubMedPubMedCentral
Metadata
Title
DNA methylation signatures of breast cancer in peripheral T-cells
Authors
Surabhi Parashar
David Cheishvili
Niaz Mahmood
Ani Arakelian
Imrana Tanvir
Haseeb Ahmed Khan
Richard Kremer
Catalin Mihalcioiu
Moshe Szyf
Shafaat A. Rabbani
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2018
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-018-4482-7

Other articles of this Issue 1/2018

BMC Cancer 1/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine