Skip to main content
Top
Published in: BMC Cancer 1/2018

Open Access 01-12-2018 | Research article

Development of a computational promoter with highly efficient expression in tumors

Authors: Shu-Yi Ho, Bo-Hau Chang, Chen-Han Chung, Yu-Ling Lin, Cheng-Hsun Chuang, Pei-Jung Hsieh, Wei-Chih Huang, Nu-Man Tsai, Sheng-Chieh Huang, Yen-Ku Liu, Yu-Chih Lo, Kuang-Wen Liao

Published in: BMC Cancer | Issue 1/2018

Login to get access

Abstract

Background

Gene therapy is a potent method to increase the therapeutic efficacy against cancer. However, a gene that is specifically expressed in the tumor area has not been identified. In addition, nonspecific expression of therapeutic genes in normal tissues may cause side effects that can harm the patients’ health. Certain promoters have been reported to drive therapeutic gene expression specifically in cancer cells; however, low expression levels of the target gene are a problem for providing good therapeutic efficacy. Therefore, a specific and highly expressive promoter is needed for cancer gene therapy.

Methods

Bioinformatics approaches were utilized to analyze transcription factors (TFs) from high-throughput data. Reverse transcription polymerase chain reaction, western blotting and cell transfection were applied for the measurement of mRNA, protein expression and activity. C57BL/6JNarl mice were injected with pD5-hrGFP to evaluate the expression of TFs.

Results

We analyzed bioinformatics data and identified three TFs, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), cyclic AMP response element binding protein (CREB), and hypoxia-inducible factor-1α (HIF-1α), that are highly active in tumor cells. Here, we constructed a novel mini-promoter, D5, that is composed of the binding sites of the three TFs. The results show that the D5 promoter specifically drives therapeutic gene expression in tumor tissues and that the strength of the D5 promoter is directly proportional to tumor size.

Conclusions

Our results show that bioinformatics may be a good tool for the selection of appropriate TFs and for the design of specific mini-promoters to improve cancer gene therapy.
Appendix
Available only for authorised users
Literature
1.
go back to reference Obermiller PS, Tait DL, Holt JT. Gene therapy for carcinoma of the breast: therapeutic genetic correction strategies. Breast Cancer Res. 2000;2(1):28–31.CrossRefPubMed Obermiller PS, Tait DL, Holt JT. Gene therapy for carcinoma of the breast: therapeutic genetic correction strategies. Breast Cancer Res. 2000;2(1):28–31.CrossRefPubMed
2.
go back to reference Shimada H, Matsushita K, Tagawa M. Recent advances in esophageal cancer gene therapy. Ann Thorac Cardiovasc Surg. 2008;14(1):3–8.PubMed Shimada H, Matsushita K, Tagawa M. Recent advances in esophageal cancer gene therapy. Ann Thorac Cardiovasc Surg. 2008;14(1):3–8.PubMed
3.
go back to reference Doloff JC, Waxman DJ. Adenoviral vectors for prodrug activation-based gene therapy for cancer. Anti Cancer Agents Med Chem. 2014;14(1):115–26.CrossRef Doloff JC, Waxman DJ. Adenoviral vectors for prodrug activation-based gene therapy for cancer. Anti Cancer Agents Med Chem. 2014;14(1):115–26.CrossRef
4.
go back to reference Erokhin M, Vassetzky Y, Georgiev P, Chetverina D. Eukaryotic enhancers: common features, regulation, and participation in diseases. Cell Mol Life Sci. 2015;72(12):2361–75.CrossRefPubMed Erokhin M, Vassetzky Y, Georgiev P, Chetverina D. Eukaryotic enhancers: common features, regulation, and participation in diseases. Cell Mol Life Sci. 2015;72(12):2361–75.CrossRefPubMed
5.
go back to reference Razin SV, Gavrilov AA, Ulyanov SV. Regulatory elements of the eukaryotic genome controlling transcription. Mol Biol. 2015;49(2):212–23.CrossRef Razin SV, Gavrilov AA, Ulyanov SV. Regulatory elements of the eukaryotic genome controlling transcription. Mol Biol. 2015;49(2):212–23.CrossRef
6.
go back to reference Rhie SK, Guo Y, Tak YG, Yao L, Shen H, Coetzee GA, Laird PW, Farnham PJ. Identification of activated enhancers and linked transcription factors in breast, prostate, and kidney tumors by tracing enhancer networks using epigenetic traits. Epigenetics Chromatin. 2016;9:50.CrossRefPubMedPubMedCentral Rhie SK, Guo Y, Tak YG, Yao L, Shen H, Coetzee GA, Laird PW, Farnham PJ. Identification of activated enhancers and linked transcription factors in breast, prostate, and kidney tumors by tracing enhancer networks using epigenetic traits. Epigenetics Chromatin. 2016;9:50.CrossRefPubMedPubMedCentral
7.
go back to reference Li J, Huang Z, Wei L. Bioinformatics analysis of the gene expression profile of hepatocellular carcinoma: preliminary results. Contemp Oncol. 2016;20(1):20–7. Li J, Huang Z, Wei L. Bioinformatics analysis of the gene expression profile of hepatocellular carcinoma: preliminary results. Contemp Oncol. 2016;20(1):20–7.
8.
go back to reference Ab Mutalib NS, Othman SN, Mohamad Yusof A, Abdullah Suhaimi SN, Muhammad R, Jamal R. Integrated microRNA, gene expression and transcription factors signature in papillary thyroid cancer with lymph node metastasis. PeerJ. 2016;4:e2119.CrossRefPubMedPubMedCentral Ab Mutalib NS, Othman SN, Mohamad Yusof A, Abdullah Suhaimi SN, Muhammad R, Jamal R. Integrated microRNA, gene expression and transcription factors signature in papillary thyroid cancer with lymph node metastasis. PeerJ. 2016;4:e2119.CrossRefPubMedPubMedCentral
9.
go back to reference Karimpour-Fard A, Epperson LE, Hunter LE. A survey of computational tools for downstream analysis of proteomic and other omic datasets. Hum Genomics. 2015;9:28.CrossRefPubMedPubMedCentral Karimpour-Fard A, Epperson LE, Hunter LE. A survey of computational tools for downstream analysis of proteomic and other omic datasets. Hum Genomics. 2015;9:28.CrossRefPubMedPubMedCentral
10.
go back to reference Zhang X, Ni Z, Duan Z, Xin Z, Wang H, Tan J, Wang G, Li F. Overexpression of E2F mRNAs associated with gastric cancer progression identified by the transcription factor and miRNA co-regulatory network analysis. PLoS One. 2015;10(2):e0116979.CrossRefPubMedPubMedCentral Zhang X, Ni Z, Duan Z, Xin Z, Wang H, Tan J, Wang G, Li F. Overexpression of E2F mRNAs associated with gastric cancer progression identified by the transcription factor and miRNA co-regulatory network analysis. PLoS One. 2015;10(2):e0116979.CrossRefPubMedPubMedCentral
11.
go back to reference Li TQ, Teng YL, Zou YG, Yang Y, Li Q, Mao XM. The highly expressed secreted phosphoprotein 1 gene in prostate cancer metastasis: a microarray-based bioinformatic analysis. Zhonghua Nan Ke Xue. 2014;20(11):984–90.PubMed Li TQ, Teng YL, Zou YG, Yang Y, Li Q, Mao XM. The highly expressed secreted phosphoprotein 1 gene in prostate cancer metastasis: a microarray-based bioinformatic analysis. Zhonghua Nan Ke Xue. 2014;20(11):984–90.PubMed
12.
go back to reference Wang Y, Zheng T. Screening of hub genes and pathways in colorectal cancer with microarray technology. Pathol Oncol Res. 2014;20(3):611–8.CrossRefPubMed Wang Y, Zheng T. Screening of hub genes and pathways in colorectal cancer with microarray technology. Pathol Oncol Res. 2014;20(3):611–8.CrossRefPubMed
13.
go back to reference Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M, et al. NCBI GEO: archive for functional genomics data sets--update. Nucleic Acids Res. 2013;41(Database issue):D991–5.PubMed Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M, et al. NCBI GEO: archive for functional genomics data sets--update. Nucleic Acids Res. 2013;41(Database issue):D991–5.PubMed
14.
15.
go back to reference Bolstad BM, Irizarry RA, Astrand M, Speed TP. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics. 2003;19(2):185–93.CrossRefPubMed Bolstad BM, Irizarry RA, Astrand M, Speed TP. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics. 2003;19(2):185–93.CrossRefPubMed
16.
go back to reference Ihaka R, Gentleman R. R: a language for data analysis and graphics. J Comput Graph Stat. 1996;5(3):299–314. Ihaka R, Gentleman R. R: a language for data analysis and graphics. J Comput Graph Stat. 1996;5(3):299–314.
17.
go back to reference Matys V, Kel-Margoulis OV, Fricke E, Liebich I, Land S, Barre-Dirrie A, Reuter I, Chekmenev D, Krull M, Hornischer K, et al. TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic Acids Res. 2006;34(Database issue):D108–10.CrossRefPubMed Matys V, Kel-Margoulis OV, Fricke E, Liebich I, Land S, Barre-Dirrie A, Reuter I, Chekmenev D, Krull M, Hornischer K, et al. TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic Acids Res. 2006;34(Database issue):D108–10.CrossRefPubMed
18.
go back to reference Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet. 2000;25(1):25–9.CrossRefPubMedPubMedCentral Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet. 2000;25(1):25–9.CrossRefPubMedPubMedCentral
19.
go back to reference Huang d W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57.CrossRef Huang d W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57.CrossRef
20.
go back to reference Ponten F, Schwenk JM, Asplund A, Edqvist PH. The Human Protein Atlas as a proteomic resource for biomarker discovery. J Intern Med. 2011;270(5):428–46.CrossRefPubMed Ponten F, Schwenk JM, Asplund A, Edqvist PH. The Human Protein Atlas as a proteomic resource for biomarker discovery. J Intern Med. 2011;270(5):428–46.CrossRefPubMed
21.
go back to reference Liu N, Furukawa T, Kobari M, Tsao MS. Comparative phenotypic studies of duct epithelial cell lines derived from normal human pancreas and pancreatic carcinoma. Am J Pathol. 1998;153(1):263–9.CrossRefPubMedPubMedCentral Liu N, Furukawa T, Kobari M, Tsao MS. Comparative phenotypic studies of duct epithelial cell lines derived from normal human pancreas and pancreatic carcinoma. Am J Pathol. 1998;153(1):263–9.CrossRefPubMedPubMedCentral
22.
go back to reference Chen CH, Liu YK, Lin YL, Chuang HY, Hsu WT, Chiu YH, Cheng TL, Liao KW. A rapid and convenient method to enhance transgenic expression in target cells. Prep Biochem Biotechnol. 2012;42(5):448–61.CrossRefPubMed Chen CH, Liu YK, Lin YL, Chuang HY, Hsu WT, Chiu YH, Cheng TL, Liao KW. A rapid and convenient method to enhance transgenic expression in target cells. Prep Biochem Biotechnol. 2012;42(5):448–61.CrossRefPubMed
23.
go back to reference Tseng FJ, Chen YC, Lin YL, Tsai NM, Lee RP, Chung YS, Chen CH, Liu YK, Huang YS, Hwang CH, et al. A fusion protein with the receptor-binding domain of vascular endothelial growth factor-A (VEGF-A) is an antagonist of angiogenesis in cancer treatment: simultaneous blocking of VEGF receptor-1 and 2. Cancer Biol Ther. 2010;10(9):865–73.CrossRefPubMed Tseng FJ, Chen YC, Lin YL, Tsai NM, Lee RP, Chung YS, Chen CH, Liu YK, Huang YS, Hwang CH, et al. A fusion protein with the receptor-binding domain of vascular endothelial growth factor-A (VEGF-A) is an antagonist of angiogenesis in cancer treatment: simultaneous blocking of VEGF receptor-1 and 2. Cancer Biol Ther. 2010;10(9):865–73.CrossRefPubMed
24.
go back to reference Yen-Ku Liu Y-LL, Chen C-H, Lin C-M, Ma K-L, Chou F-H, Tsai J-S, Lin H-Y, Chen F-R, Cheng T-L, Chang C-C, Liao K-W. A unique and potent protein binding nature of liposome containing polyethylenimine and polyethylene glycol: a nondisplaceable property. Biotechnol Bioeng. 2011;108(6):1318–27. Yen-Ku Liu Y-LL, Chen C-H, Lin C-M, Ma K-L, Chou F-H, Tsai J-S, Lin H-Y, Chen F-R, Cheng T-L, Chang C-C, Liao K-W. A unique and potent protein binding nature of liposome containing polyethylenimine and polyethylene glycol: a nondisplaceable property. Biotechnol Bioeng. 2011;108(6):1318–27.
25.
go back to reference Wang Y, Zhang XS, Xia Y. Predicting eukaryotic transcriptional cooperativity by Bayesian network integration of genome-wide data. Nucleic Acids Res. 2009;37(18):5943–58.CrossRefPubMedPubMedCentral Wang Y, Zhang XS, Xia Y. Predicting eukaryotic transcriptional cooperativity by Bayesian network integration of genome-wide data. Nucleic Acids Res. 2009;37(18):5943–58.CrossRefPubMedPubMedCentral
26.
go back to reference Hlatky L, Hahnfeldt P, Folkman J. Clinical application of antiangiogenic therapy: microvessel density, what it does and doesn’t tell us. J Natl Cancer Inst. 2002;94(12):883–93.CrossRefPubMed Hlatky L, Hahnfeldt P, Folkman J. Clinical application of antiangiogenic therapy: microvessel density, what it does and doesn’t tell us. J Natl Cancer Inst. 2002;94(12):883–93.CrossRefPubMed
27.
go back to reference Vaupel P. Tumor microenvironmental physiology and its implications for radiation oncology. Semin Radiat Oncol. 2004;14(3):198–206.CrossRefPubMed Vaupel P. Tumor microenvironmental physiology and its implications for radiation oncology. Semin Radiat Oncol. 2004;14(3):198–206.CrossRefPubMed
28.
go back to reference Leo C, Giaccia AJ, Denko NC. The hypoxic tumor microenvironment and gene expression. Semin Radiat Oncol. 2004;14(3):207–14.CrossRefPubMed Leo C, Giaccia AJ, Denko NC. The hypoxic tumor microenvironment and gene expression. Semin Radiat Oncol. 2004;14(3):207–14.CrossRefPubMed
29.
go back to reference Nakayama K. cAMP-response element-binding protein (CREB) and NF-kappaB transcription factors are activated during prolonged hypoxia and cooperatively regulate the induction of matrix metalloproteinase MMP1. J Biol Chem. 2013;288(31):22584–95.CrossRefPubMedPubMedCentral Nakayama K. cAMP-response element-binding protein (CREB) and NF-kappaB transcription factors are activated during prolonged hypoxia and cooperatively regulate the induction of matrix metalloproteinase MMP1. J Biol Chem. 2013;288(31):22584–95.CrossRefPubMedPubMedCentral
30.
go back to reference Baeuerle PA, Baltimore D. IκB: a specific inhibitor of the NF-κB transcription factor. Science. 1988;242(4878):540–6.CrossRefPubMed Baeuerle PA, Baltimore D. IκB: a specific inhibitor of the NF-κB transcription factor. Science. 1988;242(4878):540–6.CrossRefPubMed
31.
go back to reference Greenberg AJSaME. CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Biochemistry. 1999;68:821–61.CrossRef Greenberg AJSaME. CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Biochemistry. 1999;68:821–61.CrossRef
32.
33.
go back to reference Bell RJ, Rube HT, Xavier-Magalhaes A, Costa BM, Mancini A, Song JS, Costello JF. Understanding TERT promoter mutations: a common path to immortality. Mol Cancer Res. 2016;14(4):315–23.CrossRefPubMedPubMedCentral Bell RJ, Rube HT, Xavier-Magalhaes A, Costa BM, Mancini A, Song JS, Costello JF. Understanding TERT promoter mutations: a common path to immortality. Mol Cancer Res. 2016;14(4):315–23.CrossRefPubMedPubMedCentral
34.
go back to reference Higashi K, Hazama S, Araki A, Yoshimura K, Iizuka N, Yoshino S, Noma T, Oka M. A novel cancer vaccine strategy with combined IL-18 and HSV-TK gene therapy driven by the hTERT promoter in a murine colorectal cancer model. Int J Oncol. 2014;45(4):1412–20.CrossRefPubMedPubMedCentral Higashi K, Hazama S, Araki A, Yoshimura K, Iizuka N, Yoshino S, Noma T, Oka M. A novel cancer vaccine strategy with combined IL-18 and HSV-TK gene therapy driven by the hTERT promoter in a murine colorectal cancer model. Int J Oncol. 2014;45(4):1412–20.CrossRefPubMedPubMedCentral
36.
go back to reference Adamo P, Ladomery MR. The oncogene ERG: a key factor in prostate cancer. Oncogene. 2016;35(4):403–14.CrossRefPubMed Adamo P, Ladomery MR. The oncogene ERG: a key factor in prostate cancer. Oncogene. 2016;35(4):403–14.CrossRefPubMed
37.
go back to reference Vizcaino C, Mansilla S, Portugal J. Sp1 transcription factor: a long-standing target in cancer chemotherapy. Pharmacol Ther. 2015;152:111–24.CrossRefPubMed Vizcaino C, Mansilla S, Portugal J. Sp1 transcription factor: a long-standing target in cancer chemotherapy. Pharmacol Ther. 2015;152:111–24.CrossRefPubMed
Metadata
Title
Development of a computational promoter with highly efficient expression in tumors
Authors
Shu-Yi Ho
Bo-Hau Chang
Chen-Han Chung
Yu-Ling Lin
Cheng-Hsun Chuang
Pei-Jung Hsieh
Wei-Chih Huang
Nu-Man Tsai
Sheng-Chieh Huang
Yen-Ku Liu
Yu-Chih Lo
Kuang-Wen Liao
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2018
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-018-4421-7

Other articles of this Issue 1/2018

BMC Cancer 1/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine