Skip to main content
Top
Published in: BMC Cancer 1/2018

Open Access 01-12-2018 | Research article

Generation of a PAX6 knockout glioblastoma cell line with changes in cell cycle distribution and sensitivity to oxidative stress

Authors: Beate Hegge, Eva Sjøttem, Ingvild Mikkola

Published in: BMC Cancer | Issue 1/2018

Login to get access

Abstract

Background

The transcription factor PAX6 is expressed in various cancers. In anaplastic astrocytic glioma, PAX6 expression is inversely related to tumor grade, resulting in low PAX6 expression in Glioblastoma, the highest-grade astrocytic glioma. The aim of the present study was to develop a PAX6 knock out cell line as a tool for molecular studies of the roles PAX6 have in attenuating glioblastoma tumor progression.

Methods

The CRISPR-Cas9 technique was used to knock out PAX6 in U251 N cells. Viral transduction of a doxycycline inducible EGFP-PAX6 expression vector was used to re-introduce (rescue) PAX6 expression in the PAX6 knock out cells. The knock out and rescued cells were rigorously characterized by analyzing morphology, proliferation, colony forming abilities and responses to oxidative stress and chemotherapeutic agents.

Results

The knock out cells had increased proliferation and colony forming abilities compared to wild type cells, consistent with clinical observations indicating that PAX6 functions as a tumor-suppressor. Cell cycle distribution and sensitivity to H2O2 induced oxidative stress were further studied, as well as the effect of different chemotherapeutic agents. For the PAX6 knock out cells, the percentage of cells in G2/M phase increased compared to PAX6 control cells, indicating that PAX6 keeps U251 N cells in the G1 phase of the cell cycle. Interestingly, PAX6 knock out cells were more resilient to H2O2 induced oxidative stress than wild type cells. Chemotherapy treatment is known to generate oxidative stress, hence the effect of several chemotherapeutic agents were tested. We discovered interesting differences in the sensitivity to chemotherapeutic drugs (Temozolomide, Withaferin A and Sulforaphane) between the PAX6 expressing and non-expressing cells.

Conclusions

The U251 N PAX6 knock out cell lines generated can be used as a tool to study the molecular functions and mechanisms of PAX6 as a tumor suppressor with regard to tumor progression and treatment of glioblastoma.
Appendix
Available only for authorised users
Literature
1.
go back to reference Sarica FB, Cekinmez M, Tufan K, Sen O, Onal HC, Mertsoylu H, Topkan E, Pehlivan B, Erdogan B, Altinors MN. Five-year follow-up results for patients diagnosed with anaplastic astrocytoma and effectiveness of concomitant therapy with temozolomide for recurrent anaplastic astrocytoma. Asian J Neurosurg. 2012;7(4):181–90.CrossRefPubMedPubMedCentral Sarica FB, Cekinmez M, Tufan K, Sen O, Onal HC, Mertsoylu H, Topkan E, Pehlivan B, Erdogan B, Altinors MN. Five-year follow-up results for patients diagnosed with anaplastic astrocytoma and effectiveness of concomitant therapy with temozolomide for recurrent anaplastic astrocytoma. Asian J Neurosurg. 2012;7(4):181–90.CrossRefPubMedPubMedCentral
2.
go back to reference Schwartzbaum JA, Fisher JL, Aldape KD, Wrensch M. Epidemiology and molecular pathology of glioma. Nat Clin Pract Neurol. 2006;2(9):494–503. quiz 491 p following 516CrossRefPubMed Schwartzbaum JA, Fisher JL, Aldape KD, Wrensch M. Epidemiology and molecular pathology of glioma. Nat Clin Pract Neurol. 2006;2(9):494–503. quiz 491 p following 516CrossRefPubMed
3.
go back to reference Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A, Hahn WC, Ligon KL, Louis DN, Brennan C, et al. Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev. 2007;21(21):2683–710.CrossRefPubMed Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A, Hahn WC, Ligon KL, Louis DN, Brennan C, et al. Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev. 2007;21(21):2683–710.CrossRefPubMed
4.
go back to reference Khasraw M, Lassman AB. Advances in the treatment of malignant gliomas. Curr Oncol Rep. 2010;12(1):26–33.CrossRefPubMed Khasraw M, Lassman AB. Advances in the treatment of malignant gliomas. Curr Oncol Rep. 2010;12(1):26–33.CrossRefPubMed
5.
go back to reference Nobusawa S, Lachuer J, Wierinckx A, Kim YH, Huang J, Legras C, Kleihues P, Ohgaki H. Intratumoral patterns of genomic imbalance in glioblastomas. Brain Pathol (Zurich, Switzerland). 2010;20(5):936–44. Nobusawa S, Lachuer J, Wierinckx A, Kim YH, Huang J, Legras C, Kleihues P, Ohgaki H. Intratumoral patterns of genomic imbalance in glioblastomas. Brain Pathol (Zurich, Switzerland). 2010;20(5):936–44.
6.
go back to reference Sengupta S, Marrinan J, Frishman C, Sampath P. Impact of temozolomide on immune response during malignant glioma chemotherapy. Clin Dev Immunol. 2012;2012:831090.CrossRefPubMedPubMedCentral Sengupta S, Marrinan J, Frishman C, Sampath P. Impact of temozolomide on immune response during malignant glioma chemotherapy. Clin Dev Immunol. 2012;2012:831090.CrossRefPubMedPubMedCentral
7.
go back to reference Mischel PS, Cloughesy TF. Targeted molecular therapy of GBM. Brain Pathol (Zurich, Switzerland). 2003;13(1):52–61.CrossRef Mischel PS, Cloughesy TF. Targeted molecular therapy of GBM. Brain Pathol (Zurich, Switzerland). 2003;13(1):52–61.CrossRef
8.
go back to reference Aoki T, Hashimoto N, Matsutani M. Management of glioblastoma. Expert Opin Pharmacother. 2007;8(18):3133–46.CrossRefPubMed Aoki T, Hashimoto N, Matsutani M. Management of glioblastoma. Expert Opin Pharmacother. 2007;8(18):3133–46.CrossRefPubMed
10.
go back to reference Manuel MN, Mi D, Mason JO, Price DJ. Regulation of cerebral cortical neurogenesis by the Pax6 transcription factor. Front Cell Neurosci. 2015;9:70.PubMedPubMedCentral Manuel MN, Mi D, Mason JO, Price DJ. Regulation of cerebral cortical neurogenesis by the Pax6 transcription factor. Front Cell Neurosci. 2015;9:70.PubMedPubMedCentral
11.
go back to reference Osumi N, Shinohara H, Numayama-Tsuruta K, Maekawa M. Concise review: Pax6 transcription factor contributes to both embryonic and adult neurogenesis as a multifunctional regulator. Stem Cells (Dayton, Ohio). 2008;26(7):1663–72.CrossRef Osumi N, Shinohara H, Numayama-Tsuruta K, Maekawa M. Concise review: Pax6 transcription factor contributes to both embryonic and adult neurogenesis as a multifunctional regulator. Stem Cells (Dayton, Ohio). 2008;26(7):1663–72.CrossRef
12.
go back to reference Hsieh YW, Yang XJ. Dynamic Pax6 expression during the neurogenic cell cycle influences proliferation and cell fate choices of retinal progenitors. Neural Dev. 2009;4:32.CrossRefPubMedPubMedCentral Hsieh YW, Yang XJ. Dynamic Pax6 expression during the neurogenic cell cycle influences proliferation and cell fate choices of retinal progenitors. Neural Dev. 2009;4:32.CrossRefPubMedPubMedCentral
13.
go back to reference Muratovska A, Zhou C, He S, Goodyer P, Eccles MR. Paired-box genes are frequently expressed in cancer and often required for cancer cell survival. Oncogene. 2003;22(39):7989–97.CrossRefPubMed Muratovska A, Zhou C, He S, Goodyer P, Eccles MR. Paired-box genes are frequently expressed in cancer and often required for cancer cell survival. Oncogene. 2003;22(39):7989–97.CrossRefPubMed
14.
go back to reference Shih YL, Kuo CC, Yan MD, Lin YW, Hsieh CB, Hsieh TY. Quantitative methylation analysis reveals distinct association between PAX6 methylation and clinical characteristics with different viral infections in hepatocellular carcinoma. Clin Epigenetics. 2016;8:41.CrossRefPubMedPubMedCentral Shih YL, Kuo CC, Yan MD, Lin YW, Hsieh CB, Hsieh TY. Quantitative methylation analysis reveals distinct association between PAX6 methylation and clinical characteristics with different viral infections in hepatocellular carcinoma. Clin Epigenetics. 2016;8:41.CrossRefPubMedPubMedCentral
15.
go back to reference Zhao Y, Lu G, Ke X, Lu X, Wang X, Li H, Ren M, He S. miR-488 acts as a tumor suppressor gene in gastric cancer. Tumour Biol. 2016;37(7):8691–8.CrossRefPubMed Zhao Y, Lu G, Ke X, Lu X, Wang X, Li H, Ren M, He S. miR-488 acts as a tumor suppressor gene in gastric cancer. Tumour Biol. 2016;37(7):8691–8.CrossRefPubMed
16.
go back to reference Zhang X, Yang X, Wang J, Liang T, Gu Y, Yang D. Down-regulation of PAX6 by promoter methylation is associated with poor prognosis in non small cell lung cancer. Int J Clin Exp Pathol. 2015;8(9):11452–7.PubMedPubMedCentral Zhang X, Yang X, Wang J, Liang T, Gu Y, Yang D. Down-regulation of PAX6 by promoter methylation is associated with poor prognosis in non small cell lung cancer. Int J Clin Exp Pathol. 2015;8(9):11452–7.PubMedPubMedCentral
17.
go back to reference Zhou YH, Wu X, Tan F, Shi YX, Glass T, Liu TJ, Wathen K, Hess KR, Gumin J, Lang F, et al. PAX6 suppresses growth of human glioblastoma cells. J Neuro-Oncol. 2005;71(3):223–9.CrossRef Zhou YH, Wu X, Tan F, Shi YX, Glass T, Liu TJ, Wathen K, Hess KR, Gumin J, Lang F, et al. PAX6 suppresses growth of human glioblastoma cells. J Neuro-Oncol. 2005;71(3):223–9.CrossRef
18.
go back to reference Zhou YH, Tan F, Hess KR, Yung WK. The expression of PAX6, PTEN, vascular endothelial growth factor, and epidermal growth factor receptor in gliomas: relationship to tumor grade and survival. Clin Cancer Res. 2003;9(9):3369–75.PubMed Zhou YH, Tan F, Hess KR, Yung WK. The expression of PAX6, PTEN, vascular endothelial growth factor, and epidermal growth factor receptor in gliomas: relationship to tumor grade and survival. Clin Cancer Res. 2003;9(9):3369–75.PubMed
19.
go back to reference Pinto GR, Clara CA, Santos MJ, Almeida JR, Burbano RR, Rey JA, Casartelli C. Mutation analysis of gene PAX6 in human gliomas. Genet Mol Res. 2007;6(4):1019–25.PubMed Pinto GR, Clara CA, Santos MJ, Almeida JR, Burbano RR, Rey JA, Casartelli C. Mutation analysis of gene PAX6 in human gliomas. Genet Mol Res. 2007;6(4):1019–25.PubMed
20.
go back to reference Mayes DA, Hu Y, Teng Y, Siegel E, Wu X, Panda K, Tan F, Yung WK, Zhou YH. PAX6 suppresses the invasiveness of glioblastoma cells and the expression of the matrix metalloproteinase-2 gene. Cancer Res. 2006;66(20):9809–17.CrossRefPubMed Mayes DA, Hu Y, Teng Y, Siegel E, Wu X, Panda K, Tan F, Yung WK, Zhou YH. PAX6 suppresses the invasiveness of glioblastoma cells and the expression of the matrix metalloproteinase-2 gene. Cancer Res. 2006;66(20):9809–17.CrossRefPubMed
21.
go back to reference Zhou YH, Hu Y, Mayes D, Siegel E, Kim JG, Mathews MS, Hsu N, Eskander D, Yu O, Tromberg BJ, et al. PAX6 suppression of glioma angiogenesis and the expression of vascular endothelial growth factor a. J Neuro-Oncol. 2010;96(2):191–200.CrossRef Zhou YH, Hu Y, Mayes D, Siegel E, Kim JG, Mathews MS, Hsu N, Eskander D, Yu O, Tromberg BJ, et al. PAX6 suppression of glioma angiogenesis and the expression of vascular endothelial growth factor a. J Neuro-Oncol. 2010;96(2):191–200.CrossRef
22.
go back to reference Hu B, Wang Q, Wang YA, Hua S, Sauve CG, Ong D, Lan ZD, Chang Q, Ho YW, Monasterio MM, et al. Epigenetic activation of WNT5A drives glioblastoma stem cell differentiation and invasive growth. Cell. 2016;167(5):1281–95. e1218CrossRefPubMedPubMedCentral Hu B, Wang Q, Wang YA, Hua S, Sauve CG, Ong D, Lan ZD, Chang Q, Ho YW, Monasterio MM, et al. Epigenetic activation of WNT5A drives glioblastoma stem cell differentiation and invasive growth. Cell. 2016;167(5):1281–95. e1218CrossRefPubMedPubMedCentral
23.
go back to reference Chang JY, Hu Y, Siegel E, Stanley L, Zhou YH. PAX6 increases glioma cell susceptibility to detachment and oxidative stress. J Neuro-Oncol. 2007;84(1):9–19.CrossRef Chang JY, Hu Y, Siegel E, Stanley L, Zhou YH. PAX6 increases glioma cell susceptibility to detachment and oxidative stress. J Neuro-Oncol. 2007;84(1):9–19.CrossRef
24.
go back to reference Cheng Q, Ma X, Cao H, Chen Z, Wan X, Chen R, Peng R, Huang J, Jiang B. Role of miR-223/paired box 6 signaling in temozolomide chemoresistance in glioblastoma multiforme cells. Mol Med Rep. 2017;15(2):597–604.CrossRefPubMed Cheng Q, Ma X, Cao H, Chen Z, Wan X, Chen R, Peng R, Huang J, Jiang B. Role of miR-223/paired box 6 signaling in temozolomide chemoresistance in glioblastoma multiforme cells. Mol Med Rep. 2017;15(2):597–604.CrossRefPubMed
25.
go back to reference Torsvik A, Stieber D, Enger PO, Golebiewska A, Molven A, Svendsen A, Westermark B, Niclou SP, Olsen TK, Chekenya Enger M, et al. U-251 revisited: genetic drift and phenotypic consequences of long-term cultures of glioblastoma cells. Cancer Med. 2014;3(4):812–24.CrossRefPubMedPubMedCentral Torsvik A, Stieber D, Enger PO, Golebiewska A, Molven A, Svendsen A, Westermark B, Niclou SP, Olsen TK, Chekenya Enger M, et al. U-251 revisited: genetic drift and phenotypic consequences of long-term cultures of glioblastoma cells. Cancer Med. 2014;3(4):812–24.CrossRefPubMedPubMedCentral
26.
27.
go back to reference Kiselev Y, Eriksen TE, Forsdahl S, Nguyen LH, Mikkola I. 3T3 cell lines stably expressing Pax6 or Pax6(5a)--a new tool used for identification of common and isoform specific target genes. PLoS One. 2012;7(2):e31915.CrossRefPubMedPubMedCentral Kiselev Y, Eriksen TE, Forsdahl S, Nguyen LH, Mikkola I. 3T3 cell lines stably expressing Pax6 or Pax6(5a)--a new tool used for identification of common and isoform specific target genes. PLoS One. 2012;7(2):e31915.CrossRefPubMedPubMedCentral
28.
go back to reference Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JA. Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res. 2007;35(Web Server issue):W71–4.CrossRefPubMedPubMedCentral Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JA. Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res. 2007;35(Web Server issue):W71–4.CrossRefPubMedPubMedCentral
29.
go back to reference Mizuguchi H, Hayakawa T. Characteristics of adenovirus-mediated tetracycline-controllable expression system. Biochim Biophys Acta. 2001;1568(1):21–9.CrossRefPubMed Mizuguchi H, Hayakawa T. Characteristics of adenovirus-mediated tetracycline-controllable expression system. Biochim Biophys Acta. 2001;1568(1):21–9.CrossRefPubMed
30.
go back to reference Meyer-Ficca ML, Meyer RG, Kaiser H, Brack AR, Kandolf R, Kupper JH. Comparative analysis of inducible expression systems in transient transfection studies. Anal Biochem. 2004;334(1):9–19.CrossRefPubMed Meyer-Ficca ML, Meyer RG, Kaiser H, Brack AR, Kandolf R, Kupper JH. Comparative analysis of inducible expression systems in transient transfection studies. Anal Biochem. 2004;334(1):9–19.CrossRefPubMed
31.
go back to reference Cao X, Gu Y, Jiang L, Wang Y, Liu F, Xu Y, Deng J, Nan Y, Zhang L, Ye J, et al. A new approach to screening cancer stem cells from the U251 human glioma cell line based on cell growth state. Oncol Rep. 2013;29(3):1013–8.CrossRefPubMed Cao X, Gu Y, Jiang L, Wang Y, Liu F, Xu Y, Deng J, Nan Y, Zhang L, Ye J, et al. A new approach to screening cancer stem cells from the U251 human glioma cell line based on cell growth state. Oncol Rep. 2013;29(3):1013–8.CrossRefPubMed
32.
go back to reference Cheng Q, Cao H, Chen Z, Ma Z, Wan X, Peng R, Jiang B. PAX6, a novel target of miR-335, inhibits cell proliferation and invasion in glioma cells. Mol Med Rep. 2014;10(1):399–404.CrossRefPubMed Cheng Q, Cao H, Chen Z, Ma Z, Wan X, Peng R, Jiang B. PAX6, a novel target of miR-335, inhibits cell proliferation and invasion in glioma cells. Mol Med Rep. 2014;10(1):399–404.CrossRefPubMed
33.
go back to reference Sakurai K, Osumi N. The neurogenesis-controlling factor, Pax6, inhibits proliferation and promotes maturation in murine astrocytes. J Neurosci. 2008;28(18):4604–12.CrossRefPubMed Sakurai K, Osumi N. The neurogenesis-controlling factor, Pax6, inhibits proliferation and promotes maturation in murine astrocytes. J Neurosci. 2008;28(18):4604–12.CrossRefPubMed
34.
go back to reference Pavlakis E, Tonchev AB, Kaprelyan A, Enchev Y, Stoykova A. Interaction between transcription factors PAX6/PAX6-5a and specific members of miR-183-96-182 cluster, may contribute to glioma progression in glioblastoma cell lines. Oncol Rep. 2017;37(3):1579–92.CrossRefPubMed Pavlakis E, Tonchev AB, Kaprelyan A, Enchev Y, Stoykova A. Interaction between transcription factors PAX6/PAX6-5a and specific members of miR-183-96-182 cluster, may contribute to glioma progression in glioblastoma cell lines. Oncol Rep. 2017;37(3):1579–92.CrossRefPubMed
35.
go back to reference Huang BS, Luo QZ, Han Y, Li XB, Cao LJ, Wu LX. microRNA-223 promotes the growth and invasion of glioblastoma cells by targeting tumor suppressor PAX6. Oncol Rep. 2013;30(5):2263–9.CrossRefPubMed Huang BS, Luo QZ, Han Y, Li XB, Cao LJ, Wu LX. microRNA-223 promotes the growth and invasion of glioblastoma cells by targeting tumor suppressor PAX6. Oncol Rep. 2013;30(5):2263–9.CrossRefPubMed
36.
go back to reference Meng B, Wang Y, Li B. Suppression of PAX6 promotes cell proliferation and inhibits apoptosis in human retinoblastoma cells. Int J Mol Med. 2014;34(2):399–408.CrossRefPubMedPubMedCentral Meng B, Wang Y, Li B. Suppression of PAX6 promotes cell proliferation and inhibits apoptosis in human retinoblastoma cells. Int J Mol Med. 2014;34(2):399–408.CrossRefPubMedPubMedCentral
37.
go back to reference Farhy C, Elgart M, Shapira Z, Oron-Karni V, Yaron O, Menuchin Y, Rechavi G, Ashery-Padan R. Pax6 is required for normal cell-cycle exit and the differentiation kinetics of retinal progenitor cells. PLoS One. 2013;8(9):e76489.CrossRefPubMedPubMedCentral Farhy C, Elgart M, Shapira Z, Oron-Karni V, Yaron O, Menuchin Y, Rechavi G, Ashery-Padan R. Pax6 is required for normal cell-cycle exit and the differentiation kinetics of retinal progenitor cells. PLoS One. 2013;8(9):e76489.CrossRefPubMedPubMedCentral
38.
go back to reference Zhao XX, Yue WW, Zhang LL, Ma LL, Jia WW, Qian ZZ, Zhang CC, Wang YY. Downregulation of PAX6 by shRNA inhibits proliferation and cell cycle progression of human non-small cell lung cancer cell lines. PLoS One. 2014;9(1):e85738.CrossRefPubMedPubMedCentral Zhao XX, Yue WW, Zhang LL, Ma LL, Jia WW, Qian ZZ, Zhang CC, Wang YY. Downregulation of PAX6 by shRNA inhibits proliferation and cell cycle progression of human non-small cell lung cancer cell lines. PLoS One. 2014;9(1):e85738.CrossRefPubMedPubMedCentral
39.
go back to reference Toyokuni S, Okamoto K, Yodoi J, Hiai H. Persistent oxidative stress in cancer. FEBS Lett. 1995;358(1):1–3.CrossRefPubMed Toyokuni S, Okamoto K, Yodoi J, Hiai H. Persistent oxidative stress in cancer. FEBS Lett. 1995;358(1):1–3.CrossRefPubMed
40.
go back to reference Szatrowski TP, Nathan CF. Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res. 1991;51(3):794–8.PubMed Szatrowski TP, Nathan CF. Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res. 1991;51(3):794–8.PubMed
41.
go back to reference Schumacker PT. Reactive oxygen species in cancer cells: live by the sword, die by the sword. Cancer Cell. 2006;10(3):175–6.CrossRefPubMed Schumacker PT. Reactive oxygen species in cancer cells: live by the sword, die by the sword. Cancer Cell. 2006;10(3):175–6.CrossRefPubMed
42.
go back to reference Zieba M, Suwalski M, Kwiatkowska S, Piasecka G, Grzelewska-Rzymowska I, Stolarek R, Nowak D. Comparison of hydrogen peroxide generation and the content of lipid peroxidation products in lung cancer tissue and pulmonary parenchyma. Respir Med. 2000;94(8):800–5.CrossRefPubMed Zieba M, Suwalski M, Kwiatkowska S, Piasecka G, Grzelewska-Rzymowska I, Stolarek R, Nowak D. Comparison of hydrogen peroxide generation and the content of lipid peroxidation products in lung cancer tissue and pulmonary parenchyma. Respir Med. 2000;94(8):800–5.CrossRefPubMed
43.
go back to reference Grogan PT, Sleder KD, Samadi AK, Zhang H, Timmermann BN, Cohen MS. Cytotoxicity of withaferin a in glioblastomas involves induction of an oxidative stress-mediated heat shock response while altering Akt/mTOR and MAPK signaling pathways. Investig New Drugs. 2013;31(3):545–57.CrossRef Grogan PT, Sleder KD, Samadi AK, Zhang H, Timmermann BN, Cohen MS. Cytotoxicity of withaferin a in glioblastomas involves induction of an oxidative stress-mediated heat shock response while altering Akt/mTOR and MAPK signaling pathways. Investig New Drugs. 2013;31(3):545–57.CrossRef
44.
go back to reference Sun J, Rockowitz S, Xie Q, Ashery-Padan R, Zheng D, Cvekl A. Identification of in vivo DNA-binding mechanisms of Pax6 and reconstruction of Pax6-dependent gene regulatory networks during forebrain and lens development. Nucleic Acids Res. 2015;43(14):6827–46.CrossRefPubMedPubMedCentral Sun J, Rockowitz S, Xie Q, Ashery-Padan R, Zheng D, Cvekl A. Identification of in vivo DNA-binding mechanisms of Pax6 and reconstruction of Pax6-dependent gene regulatory networks during forebrain and lens development. Nucleic Acids Res. 2015;43(14):6827–46.CrossRefPubMedPubMedCentral
45.
go back to reference Duparc RH, Abdouh M, David J, Lepine M, Tetreault N, Bernier G. Pax6 controls the proliferation rate of neuroepithelial progenitors from the mouse optic vesicle. Dev Biol. 2007;301(2):374–87.CrossRefPubMed Duparc RH, Abdouh M, David J, Lepine M, Tetreault N, Bernier G. Pax6 controls the proliferation rate of neuroepithelial progenitors from the mouse optic vesicle. Dev Biol. 2007;301(2):374–87.CrossRefPubMed
47.
go back to reference Cartier L, Laforge T, Feki A, Arnaudeau S, Dubois-Dauphin M, Krause KH. Pax6-induced alteration of cell fate: shape changes, expression of neuronal alpha tubulin, postmitotic phenotype, and cell migration. J Neurobiol. 2006;66(5):421–36.CrossRefPubMed Cartier L, Laforge T, Feki A, Arnaudeau S, Dubois-Dauphin M, Krause KH. Pax6-induced alteration of cell fate: shape changes, expression of neuronal alpha tubulin, postmitotic phenotype, and cell migration. J Neurobiol. 2006;66(5):421–36.CrossRefPubMed
49.
go back to reference Kubota H, Nishizaki T, Harada K, Harada K, Oga A, Ito H, Suzuki M, Sasaki K. Identification of recurrent chromosomal rearrangements and the unique relationship between low-level amplification and translocation in glioblastoma. Genes Chromosomes Cancer. 2001;31(2):125–33.CrossRefPubMed Kubota H, Nishizaki T, Harada K, Harada K, Oga A, Ito H, Suzuki M, Sasaki K. Identification of recurrent chromosomal rearrangements and the unique relationship between low-level amplification and translocation in glioblastoma. Genes Chromosomes Cancer. 2001;31(2):125–33.CrossRefPubMed
50.
go back to reference Schedl A, Ross A, Lee M, Engelkamp D, Rashbass P, van Heyningen V, Hastie ND. Influence of PAX6 gene dosage on development: overexpression causes severe eye abnormalities. Cell. 1996;86(1):71–82.CrossRefPubMed Schedl A, Ross A, Lee M, Engelkamp D, Rashbass P, van Heyningen V, Hastie ND. Influence of PAX6 gene dosage on development: overexpression causes severe eye abnormalities. Cell. 1996;86(1):71–82.CrossRefPubMed
51.
go back to reference Dora N, Ou J, Kucerova R, Parisi I, West JD, Collinson JM. PAX6 dosage effects on corneal development, growth, and wound healing. Dev Dyn. 2008;237(5):1295–306.CrossRefPubMedPubMedCentral Dora N, Ou J, Kucerova R, Parisi I, West JD, Collinson JM. PAX6 dosage effects on corneal development, growth, and wound healing. Dev Dyn. 2008;237(5):1295–306.CrossRefPubMedPubMedCentral
52.
go back to reference Mascarenhas JB, Young KP, Littlejohn EL, Yoo BK, Salgia R, Lang D. PAX6 is expressed in pancreatic cancer and actively participates in cancer progression through activation of the MET tyrosine kinase receptor gene. J Biol Chem. 2009;284(40):27524–32.CrossRefPubMedPubMedCentral Mascarenhas JB, Young KP, Littlejohn EL, Yoo BK, Salgia R, Lang D. PAX6 is expressed in pancreatic cancer and actively participates in cancer progression through activation of the MET tyrosine kinase receptor gene. J Biol Chem. 2009;284(40):27524–32.CrossRefPubMedPubMedCentral
53.
go back to reference Shimizu N, Watanabe H, Kubota J, Wu J, Saito R, Yokoi T, Era T, Iwatsubo T, Watanabe T, Nishina S, et al. Pax6-5a promotes neuronal differentiation of murine embryonic stem cells. Biol Pharm Bull. 2009;32(6):999–1003.CrossRefPubMed Shimizu N, Watanabe H, Kubota J, Wu J, Saito R, Yokoi T, Era T, Iwatsubo T, Watanabe T, Nishina S, et al. Pax6-5a promotes neuronal differentiation of murine embryonic stem cells. Biol Pharm Bull. 2009;32(6):999–1003.CrossRefPubMed
54.
go back to reference Yamasaki T, Kawaji K, Ono K, Bito H, Hirano T, Osumi N, Kengaku M. Pax6 regulates granule cell polarization during parallel fiber formation in the developing cerebellum. Dev (Cambridge, England). 2001;128(16):3133–44. Yamasaki T, Kawaji K, Ono K, Bito H, Hirano T, Osumi N, Kengaku M. Pax6 regulates granule cell polarization during parallel fiber formation in the developing cerebellum. Dev (Cambridge, England). 2001;128(16):3133–44.
55.
go back to reference Ashery-Padan R, Zhou X, Marquardt T, Herrera P, Toube L, Berry A, Gruss P. Conditional inactivation of Pax6 in the pancreas causes early onset of diabetes. Dev Biol. 2004;269(2):479–88.CrossRefPubMed Ashery-Padan R, Zhou X, Marquardt T, Herrera P, Toube L, Berry A, Gruss P. Conditional inactivation of Pax6 in the pancreas causes early onset of diabetes. Dev Biol. 2004;269(2):479–88.CrossRefPubMed
56.
go back to reference Di Lullo E, Haton C, Le Poupon C, Volovitch M, Joliot A, Thomas JL, Prochiantz A. Paracrine Pax6 activity regulates oligodendrocyte precursor cell migration in the chick embryonic neural tube. Dev (Cambridge, England). 2011;138(22):4991–5001.CrossRef Di Lullo E, Haton C, Le Poupon C, Volovitch M, Joliot A, Thomas JL, Prochiantz A. Paracrine Pax6 activity regulates oligodendrocyte precursor cell migration in the chick embryonic neural tube. Dev (Cambridge, England). 2011;138(22):4991–5001.CrossRef
57.
go back to reference Benzing K, Flunkert S, Schedl A, Engelkamp D. A novel approach to selectively target neuronal subpopulations reveals genetic pathways that regulate tangential migration in the vertebrate hindbrain. PLoS Genet. 2011;7(6):e1002099.CrossRefPubMedPubMedCentral Benzing K, Flunkert S, Schedl A, Engelkamp D. A novel approach to selectively target neuronal subpopulations reveals genetic pathways that regulate tangential migration in the vertebrate hindbrain. PLoS Genet. 2011;7(6):e1002099.CrossRefPubMedPubMedCentral
58.
go back to reference Ouyang J, Shen YC, Yeh LK, Li W, Coyle BM, Liu CY, Fini ME. Pax6 overexpression suppresses cell proliferation and retards the cell cycle in corneal epithelial cells. Invest Ophthalmol Vis Sci. 2006;47(6):2397–407.CrossRefPubMed Ouyang J, Shen YC, Yeh LK, Li W, Coyle BM, Liu CY, Fini ME. Pax6 overexpression suppresses cell proliferation and retards the cell cycle in corneal epithelial cells. Invest Ophthalmol Vis Sci. 2006;47(6):2397–407.CrossRefPubMed
59.
go back to reference Bonnefont J, Laforge T, Plastre O, Beck B, Sorce S, Dehay C, Krause KH. Primate-specific RFPL1 gene controls cell-cycle progression through cyclin B1/Cdc2 degradation. Cell Death Differ. 2011;18(2):293–303.CrossRefPubMed Bonnefont J, Laforge T, Plastre O, Beck B, Sorce S, Dehay C, Krause KH. Primate-specific RFPL1 gene controls cell-cycle progression through cyclin B1/Cdc2 degradation. Cell Death Differ. 2011;18(2):293–303.CrossRefPubMed
60.
go back to reference Nojima H. G1 and S-phase checkpoints, chromosome instability, and cancer. Methods Mol Biol (Clifton, NJ). 2004;280:3–49. Nojima H. G1 and S-phase checkpoints, chromosome instability, and cancer. Methods Mol Biol (Clifton, NJ). 2004;280:3–49.
61.
go back to reference Zhang J, Stevens MF, Bradshaw TD. Temozolomide: mechanisms of action, repair and resistance. Curr Mol Pharmacol. 2012;5(1):102–14.CrossRefPubMed Zhang J, Stevens MF, Bradshaw TD. Temozolomide: mechanisms of action, repair and resistance. Curr Mol Pharmacol. 2012;5(1):102–14.CrossRefPubMed
62.
go back to reference Grogan PT, Sarkaria JN, Timmermann BN, Cohen MS. Oxidative cytotoxic agent withaferin a resensitizes temozolomide-resistant glioblastomas via MGMT depletion and induces apoptosis through Akt/mTOR pathway inhibitory modulation. Investig New Drugs. 2014;32(4):604–17.CrossRef Grogan PT, Sarkaria JN, Timmermann BN, Cohen MS. Oxidative cytotoxic agent withaferin a resensitizes temozolomide-resistant glioblastomas via MGMT depletion and induces apoptosis through Akt/mTOR pathway inhibitory modulation. Investig New Drugs. 2014;32(4):604–17.CrossRef
63.
go back to reference Huang TY, Chang WC, Wang MY, Yang YR, Hsu YC. Effect of sulforaphane on growth inhibition in human brain malignant glioma GBM 8401 cells by means of mitochondrial- and MEK/ERK-mediated apoptosis pathway. Cell Biochem Biophys. 2012;63(3):247–59.CrossRefPubMed Huang TY, Chang WC, Wang MY, Yang YR, Hsu YC. Effect of sulforaphane on growth inhibition in human brain malignant glioma GBM 8401 cells by means of mitochondrial- and MEK/ERK-mediated apoptosis pathway. Cell Biochem Biophys. 2012;63(3):247–59.CrossRefPubMed
64.
go back to reference Zhang Z, Li C, Shang L, Zhang Y, Zou R, Zhan Y, Bi B. Sulforaphane induces apoptosis and inhibits invasion in U251MG glioblastoma cells. SpringerPlus. 2016;5:235.CrossRefPubMedPubMedCentral Zhang Z, Li C, Shang L, Zhang Y, Zou R, Zhan Y, Bi B. Sulforaphane induces apoptosis and inhibits invasion in U251MG glioblastoma cells. SpringerPlus. 2016;5:235.CrossRefPubMedPubMedCentral
65.
go back to reference Lan F, Yang Y, Han J, Wu Q, Yu H, Yue X. Sulforaphane reverses chemo-resistance to temozolomide in glioblastoma cells by NF-kappaB-dependent pathway downregulating MGMT expression. Int J Oncol. 2016;48(2):559–68.CrossRefPubMed Lan F, Yang Y, Han J, Wu Q, Yu H, Yue X. Sulforaphane reverses chemo-resistance to temozolomide in glioblastoma cells by NF-kappaB-dependent pathway downregulating MGMT expression. Int J Oncol. 2016;48(2):559–68.CrossRefPubMed
66.
go back to reference Martin S, Cosset EC, Terrand J, Maglott A, Takeda K, Dontenwill M. Caveolin-1 regulates glioblastoma aggressiveness through the control of alpha(5)beta(1) integrin expression and modulates glioblastoma responsiveness to SJ749, an alpha(5)beta(1) integrin antagonist. Biochim Biophys Acta. 2009;1793(2):354–67.CrossRefPubMed Martin S, Cosset EC, Terrand J, Maglott A, Takeda K, Dontenwill M. Caveolin-1 regulates glioblastoma aggressiveness through the control of alpha(5)beta(1) integrin expression and modulates glioblastoma responsiveness to SJ749, an alpha(5)beta(1) integrin antagonist. Biochim Biophys Acta. 2009;1793(2):354–67.CrossRefPubMed
67.
go back to reference Zhang X, Zhao M, Huang AY, Fei Z, Zhang W, Wang XL. The effect of cyclin D expression on cell proliferation in human gliomas. J Clin Neurosci. 2005;12(2):166–8.CrossRefPubMed Zhang X, Zhao M, Huang AY, Fei Z, Zhang W, Wang XL. The effect of cyclin D expression on cell proliferation in human gliomas. J Clin Neurosci. 2005;12(2):166–8.CrossRefPubMed
68.
go back to reference Stacey DW. Cyclin D1 serves as a cell cycle regulatory switch in actively proliferating cells. Curr Opin Cell Biol. 2003;15(2):158–63.CrossRefPubMed Stacey DW. Cyclin D1 serves as a cell cycle regulatory switch in actively proliferating cells. Curr Opin Cell Biol. 2003;15(2):158–63.CrossRefPubMed
69.
70.
go back to reference Wang J, Wang Q, Cui Y, Liu ZY, Zhao W, Wang CL, Dong Y, Hou L, Hu G, Luo C, et al. Knockdown of cyclin D1 inhibits proliferation, induces apoptosis, and attenuates the invasive capacity of human glioblastoma cells. J Neuro-Oncol. 2012;106(3):473–84.CrossRef Wang J, Wang Q, Cui Y, Liu ZY, Zhao W, Wang CL, Dong Y, Hou L, Hu G, Luo C, et al. Knockdown of cyclin D1 inhibits proliferation, induces apoptosis, and attenuates the invasive capacity of human glioblastoma cells. J Neuro-Oncol. 2012;106(3):473–84.CrossRef
71.
go back to reference Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods (San Diego, Calif). 2001;25(4):402–8.CrossRef Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods (San Diego, Calif). 2001;25(4):402–8.CrossRef
Metadata
Title
Generation of a PAX6 knockout glioblastoma cell line with changes in cell cycle distribution and sensitivity to oxidative stress
Authors
Beate Hegge
Eva Sjøttem
Ingvild Mikkola
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2018
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-018-4394-6

Other articles of this Issue 1/2018

BMC Cancer 1/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine