Skip to main content
Top
Published in: BMC Cancer 1/2017

Open Access 01-12-2017 | Research article

Involvement of DPP9 in gene fusions in serous ovarian carcinoma

Authors: Marianne Lislerud Smebye, Antonio Agostini, Bjarne Johannessen, Jim Thorsen, Ben Davidson, Claes Göran Tropé, Sverre Heim, Rolf Inge Skotheim, Francesca Micci

Published in: BMC Cancer | Issue 1/2017

Login to get access

Abstract

Background

A fusion gene is a hybrid gene consisting of parts from two previously independent genes. Chromosomal rearrangements leading to gene breakage are frequent in high-grade serous ovarian carcinomas and have been reported as a common mechanism for inactivating tumor suppressor genes. However, no fusion genes have been repeatedly reported to be recurrent driver events in ovarian carcinogenesis. We combined genomic and transcriptomic information to identify novel fusion gene candidates and aberrantly expressed genes in ovarian carcinomas.

Methods

Examined were 19 previously karyotyped ovarian carcinomas (18 of the serous histotype and one undifferentiated). First, karyotypic aberrations were compared to fusion gene candidates identified by RNA sequencing (RNA-seq). In addition, we used exon-level gene expression microarrays as a screening tool to identify aberrantly expressed genes possibly involved in gene fusion events, and compared the findings to the RNA-seq data.

Results

We found a DPP9-PPP6R3 fusion transcript in one tumor showing a matching genomic 11;19-translocation. Another tumor had a rearrangement of DPP9 with PLIN3. Both rearrangements were associated with diminished expression of the 3′ end of DPP9 corresponding to the breakpoints identified by RNA-seq. For the exon-level expression analysis, candidate fusion partner genes were ranked according to deviating expression compared to the median of the sample set. The results were collated with data obtained from the RNA-seq analysis. Several fusion candidates were identified, among them TMEM123-MMP27, ZBTB46-WFDC13, and PLXNB1-PRKAR2A, all of which led to stronger expression of the 3′ genes. In view of our previous findings of nonrandom rearrangements of chromosome 19 in this cancer type, particular emphasis was given to changes of this chromosome and a DDA1-FAM129C fusion event was identified.

Conclusions

We have identified novel fusion gene candidates in high-grade serous ovarian carcinoma. DPP9 was involved in two different fusion transcripts that both resulted in deregulated expression of the 3′ end of the transcript and thus possible loss of the active domains in the DPP9 protein. The identified rearrangements might play a role in tumorigenesis or tumor progression.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kurman RJ, Hendrick Ellenson L, Ronnett BM, editors. Blaustein’s pathology of the female genital tract. 6th ed. New York: Springer-Verlag; 2011. Kurman RJ, Hendrick Ellenson L, Ronnett BM, editors. Blaustein’s pathology of the female genital tract. 6th ed. New York: Springer-Verlag; 2011.
2.
go back to reference Bowtell DD, Bohm S, Ahmed AA, Aspuria P-J, Bast RC Jr, Beral V, Berek JS, Birrer MJ, Blagden S, Bookman MA, et al. Rethinking ovarian cancer II: reducing mortality from high-grade serous ovarian cancer. Nat Rev Cancer. 2015;15(11):668–79.CrossRefPubMedPubMedCentral Bowtell DD, Bohm S, Ahmed AA, Aspuria P-J, Bast RC Jr, Beral V, Berek JS, Birrer MJ, Blagden S, Bookman MA, et al. Rethinking ovarian cancer II: reducing mortality from high-grade serous ovarian cancer. Nat Rev Cancer. 2015;15(11):668–79.CrossRefPubMedPubMedCentral
3.
go back to reference Ciriello G, Miller ML, Aksoy BA, Senbabaoglu Y, Schultz N, Sander C. Emerging landscape of oncogenic signatures across human cancers. Nat Genet. 2013;45(10):1127–33.CrossRefPubMedPubMedCentral Ciriello G, Miller ML, Aksoy BA, Senbabaoglu Y, Schultz N, Sander C. Emerging landscape of oncogenic signatures across human cancers. Nat Genet. 2013;45(10):1127–33.CrossRefPubMedPubMedCentral
4.
go back to reference Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474(7353):609–15.CrossRef Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474(7353):609–15.CrossRef
5.
go back to reference Pejovic T, Heim S, Mandahl N, Baldetorp B, Elmfors B, Floderus UM, Furgyik S, Helm G, Himmelmann A, Willen H, et al. Chromosome aberrations in 35 primary ovarian carcinomas. Genes Chromosomes Cancer. 1992;4(1):58–68.CrossRefPubMed Pejovic T, Heim S, Mandahl N, Baldetorp B, Elmfors B, Floderus UM, Furgyik S, Helm G, Himmelmann A, Willen H, et al. Chromosome aberrations in 35 primary ovarian carcinomas. Genes Chromosomes Cancer. 1992;4(1):58–68.CrossRefPubMed
6.
go back to reference Pejovic T, Heim S, Mandahl N, Elmfors B, Floderus UM, Furgyik S, Helm G, Willen H, Mitelman F. Consistent occurrence of a 19p+ marker chromosome and loss of 11p material in ovarian seropapillary cystadenocarcinomas. Genes Chromosomes Cancer. 1989;1(2):167–71.CrossRefPubMed Pejovic T, Heim S, Mandahl N, Elmfors B, Floderus UM, Furgyik S, Helm G, Willen H, Mitelman F. Consistent occurrence of a 19p+ marker chromosome and loss of 11p material in ovarian seropapillary cystadenocarcinomas. Genes Chromosomes Cancer. 1989;1(2):167–71.CrossRefPubMed
7.
go back to reference Taetle R, Aickin M, Yang JM, Panda L, Emerson J, Roe D, Adair L, Thompson F, Liu Y, Wisner L, et al. Chromosome abnormalities in ovarian adenocarcinoma: I. Nonrandom chromosome abnormalities from 244 cases. Genes Chromosomes Cancer. 1999;25(3):290–300.CrossRefPubMed Taetle R, Aickin M, Yang JM, Panda L, Emerson J, Roe D, Adair L, Thompson F, Liu Y, Wisner L, et al. Chromosome abnormalities in ovarian adenocarcinoma: I. Nonrandom chromosome abnormalities from 244 cases. Genes Chromosomes Cancer. 1999;25(3):290–300.CrossRefPubMed
8.
go back to reference Kiechle-Schwarz M, Bauknecht T, Schmidt J, Walz L, Pfleiderer A. Recurrent cytogenetic aberrations in human ovarian carcinomas. Cancer Detect Prev. 1995;19(3):234–43.PubMed Kiechle-Schwarz M, Bauknecht T, Schmidt J, Walz L, Pfleiderer A. Recurrent cytogenetic aberrations in human ovarian carcinomas. Cancer Detect Prev. 1995;19(3):234–43.PubMed
9.
go back to reference Heim S, Mitelman F, editors. Cancer Cytogenetics: chromosomal and molecular genetic aberrations of tumor cells. Hoboken: Wiley-Blackwell; 2015. Heim S, Mitelman F, editors. Cancer Cytogenetics: chromosomal and molecular genetic aberrations of tumor cells. Hoboken: Wiley-Blackwell; 2015.
10.
go back to reference Patch A-M, Christie EL, Etemadmoghadam D, Garsed DW, George J, Fereday S, Nones K, Cowin P, Alsop K, Bailey PJ, et al. Whole–genome characterization of chemoresistant ovarian cancer. Nature. 2015;521(7553):489–94.CrossRefPubMed Patch A-M, Christie EL, Etemadmoghadam D, Garsed DW, George J, Fereday S, Nones K, Cowin P, Alsop K, Bailey PJ, et al. Whole–genome characterization of chemoresistant ovarian cancer. Nature. 2015;521(7553):489–94.CrossRefPubMed
11.
go back to reference Kiechle-Schwarz M, Bauknecht T, Karck U, Kommoss F, du Bois A, Pfleiderer A. Recurrent cytogenetic aberrations and loss of constitutional heterozygosity in ovarian carcinomas. Gynecol Oncol. 1994;55(2):198–205.CrossRefPubMed Kiechle-Schwarz M, Bauknecht T, Karck U, Kommoss F, du Bois A, Pfleiderer A. Recurrent cytogenetic aberrations and loss of constitutional heterozygosity in ovarian carcinomas. Gynecol Oncol. 1994;55(2):198–205.CrossRefPubMed
12.
go back to reference Micci F, Weimer J, Haugom L, Skotheim RI, Grunewald R, Abeler VM, Silins I, Lothe RA, Trope CG, Arnold N, et al. Reverse painting of microdissected chromosome 19 markers in ovarian carcinoma identifies a complex rearrangement map. Genes Chromosomes Cancer. 2009;48(2):184–93.CrossRefPubMed Micci F, Weimer J, Haugom L, Skotheim RI, Grunewald R, Abeler VM, Silins I, Lothe RA, Trope CG, Arnold N, et al. Reverse painting of microdissected chromosome 19 markers in ovarian carcinoma identifies a complex rearrangement map. Genes Chromosomes Cancer. 2009;48(2):184–93.CrossRefPubMed
13.
go back to reference Mertens F, Johansson B, Fioretos T, Mitelman F. The emerging complexity of gene fusions in cancer. Nat Rev Cancer. 2015;15(6):371–81.CrossRefPubMed Mertens F, Johansson B, Fioretos T, Mitelman F. The emerging complexity of gene fusions in cancer. Nat Rev Cancer. 2015;15(6):371–81.CrossRefPubMed
14.
go back to reference Annala MJ, Parker BC, Zhang W, Nykter M. Fusion genes and their discovery using high throughput sequencing. Cancer Lett. 2013;340(2):192–200.CrossRefPubMed Annala MJ, Parker BC, Zhang W, Nykter M. Fusion genes and their discovery using high throughput sequencing. Cancer Lett. 2013;340(2):192–200.CrossRefPubMed
15.
go back to reference Kumar-Sinha C, Kalyana-Sundaram S, Chinnaiyan A. Landscape of gene fusions in epithelial cancers: seq and ye shall find. Genome Medicine. 2015;7(1):129.CrossRefPubMedPubMedCentral Kumar-Sinha C, Kalyana-Sundaram S, Chinnaiyan A. Landscape of gene fusions in epithelial cancers: seq and ye shall find. Genome Medicine. 2015;7(1):129.CrossRefPubMedPubMedCentral
17.
go back to reference Micci F, Haugom L, Ahlquist T, Abeler VM, Trope CG, Lothe RA, Heim S. Tumor spreading to the contralateral ovary in bilateral ovarian carcinoma is a late event in clonal evolution. J Oncology. 2010;2010:646340.CrossRef Micci F, Haugom L, Ahlquist T, Abeler VM, Trope CG, Lothe RA, Heim S. Tumor spreading to the contralateral ovary in bilateral ovarian carcinoma is a late event in clonal evolution. J Oncology. 2010;2010:646340.CrossRef
18.
go back to reference Micci F, Skotheim RI, Haugom L, Weimer J, Eibak AM, Abeler VM, Trope CG, Arnold N, Lothe RA, Heim S. Array-CGH analysis of microdissected chromosome 19 markers in ovarian carcinoma identifies candidate target genes. Genes Chromosomes Cancer. 2010;49(11):1046–53.CrossRefPubMed Micci F, Skotheim RI, Haugom L, Weimer J, Eibak AM, Abeler VM, Trope CG, Arnold N, Lothe RA, Heim S. Array-CGH analysis of microdissected chromosome 19 markers in ovarian carcinoma identifies candidate target genes. Genes Chromosomes Cancer. 2010;49(11):1046–53.CrossRefPubMed
19.
go back to reference Nyquist KB, Panagopoulos I, Thorsen J, Haugom L, Gorunova L, Bjerkehagen B, Fossa A, Guriby M, Nome T, Lothe RA, et al. Whole-transcriptome sequencing identifies novel IRF2BP2-CDX1 fusion gene brought about by translocation t(1;5)(q42;q32) in mesenchymal chondrosarcoma. PLoS One. 2012;7(11):e49705.CrossRefPubMedPubMedCentral Nyquist KB, Panagopoulos I, Thorsen J, Haugom L, Gorunova L, Bjerkehagen B, Fossa A, Guriby M, Nome T, Lothe RA, et al. Whole-transcriptome sequencing identifies novel IRF2BP2-CDX1 fusion gene brought about by translocation t(1;5)(q42;q32) in mesenchymal chondrosarcoma. PLoS One. 2012;7(11):e49705.CrossRefPubMedPubMedCentral
21.
go back to reference Ge H, Liu K, Juan T, Fang F, Newman M, Hoeck W. FusionMap: detecting fusion genes from next-generation sequencing data at base-pair resolution. Bioinformatics. 2011;27(14):1922–8.CrossRefPubMed Ge H, Liu K, Juan T, Fang F, Newman M, Hoeck W. FusionMap: detecting fusion genes from next-generation sequencing data at base-pair resolution. Bioinformatics. 2011;27(14):1922–8.CrossRefPubMed
23.
go back to reference Agostini A, Panagopoulos I, Andersen HK, Johannesen LE, Davidson B, Trope CG, Heim S, Micci F. HMGA2 expression pattern and TERT mutations in tumors of the vulva. Oncol Rep. 2015;33(6):2675–80.CrossRefPubMedPubMedCentral Agostini A, Panagopoulos I, Andersen HK, Johannesen LE, Davidson B, Trope CG, Heim S, Micci F. HMGA2 expression pattern and TERT mutations in tumors of the vulva. Oncol Rep. 2015;33(6):2675–80.CrossRefPubMedPubMedCentral
26.
go back to reference Smebye ML, Sveen A, Haugom L, Davidson B, Trope CG, Lothe RA, Heim S, Skotheim RI, Micci F. Chromosome 19 rearrangements in ovarian carcinomas: zinc finger genes are particularly targeted. Genes Chromosomes Cancer. 2014;53(7):558–67.CrossRefPubMed Smebye ML, Sveen A, Haugom L, Davidson B, Trope CG, Lothe RA, Heim S, Skotheim RI, Micci F. Chromosome 19 rearrangements in ovarian carcinomas: zinc finger genes are particularly targeted. Genes Chromosomes Cancer. 2014;53(7):558–67.CrossRefPubMed
27.
go back to reference Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 2003;4(2):249–64.CrossRefPubMed Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 2003;4(2):249–64.CrossRefPubMed
29.
go back to reference Hoff AM, Johannessen B, Alagaratnam S, Zhao S, Nome T, Lovf M, Bakken AC, Hektoen M, Sveen A, Lothe RA, et al. Novel RNA variants in colorectal cancers. Oncotarget. 2015;6(34):36587–602.PubMedPubMedCentral Hoff AM, Johannessen B, Alagaratnam S, Zhao S, Nome T, Lovf M, Bakken AC, Hektoen M, Sveen A, Lothe RA, et al. Novel RNA variants in colorectal cancers. Oncotarget. 2015;6(34):36587–602.PubMedPubMedCentral
30.
go back to reference Hoogstraat M, de Pagter MS, Cirkel GA, van Roosmalen MJ, Harkins TT, Duran K, Kreeftmeijer J, Renkens I, Witteveen PO, Lee CC, et al. Genomic and transcriptomic plasticity in treatment-naive ovarian cancer. Genome Res. 2014;24(2):200–11.CrossRefPubMedPubMedCentral Hoogstraat M, de Pagter MS, Cirkel GA, van Roosmalen MJ, Harkins TT, Duran K, Kreeftmeijer J, Renkens I, Witteveen PO, Lee CC, et al. Genomic and transcriptomic plasticity in treatment-naive ovarian cancer. Genome Res. 2014;24(2):200–11.CrossRefPubMedPubMedCentral
31.
go back to reference Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discovery. 2012;2(5):401–4.CrossRefPubMed Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discovery. 2012;2(5):401–4.CrossRefPubMed
32.
go back to reference Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6(269):l1.CrossRef Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6(269):l1.CrossRef
34.
go back to reference Yoshihara K, Wang Q, Torres-Garcia W, Zheng S, Vegesna R, Kim H, Verhaak RG. The landscape and therapeutic relevance of cancer-associated transcript fusions. Oncogene. 2015;34(37):4845–54.CrossRefPubMed Yoshihara K, Wang Q, Torres-Garcia W, Zheng S, Vegesna R, Kim H, Verhaak RG. The landscape and therapeutic relevance of cancer-associated transcript fusions. Oncogene. 2015;34(37):4845–54.CrossRefPubMed
35.
go back to reference Consortium TU. UniProt: a hub for protein information. Nucleic Acids Res. 2015;43(D1):D204–12.CrossRef Consortium TU. UniProt: a hub for protein information. Nucleic Acids Res. 2015;43(D1):D204–12.CrossRef
36.
go back to reference Lopez-Otin C, Matrisian LM. Emerging roles of proteases in tumour suppression. Nat Rev Cancer. 2007;7(10):800–8.CrossRefPubMed Lopez-Otin C, Matrisian LM. Emerging roles of proteases in tumour suppression. Nat Rev Cancer. 2007;7(10):800–8.CrossRefPubMed
37.
go back to reference Kajiyama H, Kikkawa F, Suzuki T, Shibata K, Ino K, Mizutani S. Prolonged survival and decreased invasive activity attributable to dipeptidyl peptidase IV overexpression in ovarian carcinoma. Cancer Res. 2002;62(10):2753–7.PubMed Kajiyama H, Kikkawa F, Suzuki T, Shibata K, Ino K, Mizutani S. Prolonged survival and decreased invasive activity attributable to dipeptidyl peptidase IV overexpression in ovarian carcinoma. Cancer Res. 2002;62(10):2753–7.PubMed
38.
go back to reference Busek P, Stremenova J, Sromova L, Hilser M, Balaziova E, Kosek D, Trylcova J, Strnad H, Krepela E, Sedo A. Dipeptidyl peptidase-IV inhibits glioma cell growth independent of its enzymatic activity. Int J Biochem Cell Biol. 2012;44(5):738–47.CrossRefPubMed Busek P, Stremenova J, Sromova L, Hilser M, Balaziova E, Kosek D, Trylcova J, Strnad H, Krepela E, Sedo A. Dipeptidyl peptidase-IV inhibits glioma cell growth independent of its enzymatic activity. Int J Biochem Cell Biol. 2012;44(5):738–47.CrossRefPubMed
39.
go back to reference Yao TW, Kim WS, Yu DM, Sharbeen G, McCaughan GW, Choi KY, Xia P, Gorrell MD. A novel role of dipeptidyl peptidase 9 in epidermal growth factor signaling. Molecular Cancer Res. 2011;9(7):948–59.CrossRef Yao TW, Kim WS, Yu DM, Sharbeen G, McCaughan GW, Choi KY, Xia P, Gorrell MD. A novel role of dipeptidyl peptidase 9 in epidermal growth factor signaling. Molecular Cancer Res. 2011;9(7):948–59.CrossRef
40.
go back to reference Yu J, Wu WKK, Liang Q, Zhang N, He J, Li X, Zhang X, Xu L, Chan MTV, Ng SSM, et al. Disruption of NCOA2 by recurrent fusion with LACTB2 in colorectal cancer. Oncogene. 2016;35(2):187–95.CrossRefPubMed Yu J, Wu WKK, Liang Q, Zhang N, He J, Li X, Zhang X, Xu L, Chan MTV, Ng SSM, et al. Disruption of NCOA2 by recurrent fusion with LACTB2 in colorectal cancer. Oncogene. 2016;35(2):187–95.CrossRefPubMed
41.
go back to reference Berger MF, Lawrence MS, Demichelis F, Drier Y, Cibulskis K, Sivachenko AY, Sboner A, Esgueva R, Pflueger D, Sougnez C, et al. The genomic complexity of primary human prostate cancer. Nature. 2011;470(7333):214–20.CrossRefPubMedPubMedCentral Berger MF, Lawrence MS, Demichelis F, Drier Y, Cibulskis K, Sivachenko AY, Sboner A, Esgueva R, Pflueger D, Sougnez C, et al. The genomic complexity of primary human prostate cancer. Nature. 2011;470(7333):214–20.CrossRefPubMedPubMedCentral
42.
go back to reference Cunningham F, Amode MR, Barrell D, Beal K, Billis K, Brent S, Carvalho-Silva D, Clapham P, Coates G, Fitzgerald S, et al. Ensembl 2015. Nucleic Acids Res. 2015;43(Database issue):D662–9.CrossRefPubMed Cunningham F, Amode MR, Barrell D, Beal K, Billis K, Brent S, Carvalho-Silva D, Clapham P, Coates G, Fitzgerald S, et al. Ensembl 2015. Nucleic Acids Res. 2015;43(Database issue):D662–9.CrossRefPubMed
43.
go back to reference Kuzmanov A, Hopfer U, Marti P, Meyer-Schaller N, Yilmaz M, Christofori G. LIM-homeobox gene 2 promotes tumor growth and metastasis by inducing autocrine and paracrine PDGF-B signaling. Mol Oncol. 2014;8(2):401–16.CrossRefPubMed Kuzmanov A, Hopfer U, Marti P, Meyer-Schaller N, Yilmaz M, Christofori G. LIM-homeobox gene 2 promotes tumor growth and metastasis by inducing autocrine and paracrine PDGF-B signaling. Mol Oncol. 2014;8(2):401–16.CrossRefPubMed
44.
go back to reference Nadal N, Chapiro E, Flandrin-Gresta P, Thouvenin S, Vasselon C, Beldjord K, Fenneteau O, Bernard O, Campos L, Nguyen-Khac F. LHX2 deregulation by juxtaposition with the IGH locus in a pediatric case of chronic myeloid leukemia in B-cell lymphoid blast crisis. Leuk Res. 2012;36(9):e195–8.CrossRefPubMed Nadal N, Chapiro E, Flandrin-Gresta P, Thouvenin S, Vasselon C, Beldjord K, Fenneteau O, Bernard O, Campos L, Nguyen-Khac F. LHX2 deregulation by juxtaposition with the IGH locus in a pediatric case of chronic myeloid leukemia in B-cell lymphoid blast crisis. Leuk Res. 2012;36(9):e195–8.CrossRefPubMed
45.
go back to reference Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer. 2002;2(3):161–74.CrossRefPubMed Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer. 2002;2(3):161–74.CrossRefPubMed
46.
go back to reference Drapkin R, von Horsten HH, Lin Y, Mok SC, Crum CP, Welch WR, Hecht JL. Human epididymis protein 4 (HE4) is a secreted glycoprotein that is overexpressed by serous and endometrioid ovarian carcinomas. Cancer Res. 2005;65(6):2162–9.CrossRefPubMed Drapkin R, von Horsten HH, Lin Y, Mok SC, Crum CP, Welch WR, Hecht JL. Human epididymis protein 4 (HE4) is a secreted glycoprotein that is overexpressed by serous and endometrioid ovarian carcinomas. Cancer Res. 2005;65(6):2162–9.CrossRefPubMed
Metadata
Title
Involvement of DPP9 in gene fusions in serous ovarian carcinoma
Authors
Marianne Lislerud Smebye
Antonio Agostini
Bjarne Johannessen
Jim Thorsen
Ben Davidson
Claes Göran Tropé
Sverre Heim
Rolf Inge Skotheim
Francesca Micci
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2017
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-017-3625-6

Other articles of this Issue 1/2017

BMC Cancer 1/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine