Skip to main content
Top
Published in: BMC Cancer 1/2014

Open Access 01-12-2014 | Research article

Genomic profile of ovarian carcinomas

Authors: Francesca Micci, Lisbeth Haugom, Vera M Abeler, Ben Davidson, Claes G Tropé, Sverre Heim

Published in: BMC Cancer | Issue 1/2014

Login to get access

Abstract

Background

It is known that all tumors studied in sufficient number to draw conclusions show characteristic/specific chromosomal rearrangements, and the identification of these chromosomes and the genes rearranged behind the aberrations may ultimately lead to a tailor-made therapy for each cancer patient. Knowledge about the acquired genomic aberrations of ovarian carcinomas is still unsatisfactory.

Methods

We cytogenetically analyzed 110 new cases of ovarian carcinoma of different histological subtypes using karyotyping of G-banded chromosomes and high-resolution comparative genomic hybridization. We first compared the aberration patterns identified by the two genomic screening techniques using the so-called “classical” pathological classification in which the carcinomas are grouped as tumors of types I and II. We also broke down our findings according to the more “modern” classification which groups the carcinomas in five different categories.

Results

The chromosomal breakpoints identified by karyotyping tended to cluster to 19p/q and to 11q, but no unquestionably recurrent rearrangement could be seen. Common imbalances were scored as gains from 1q, 3q, 7q, and 8q and losses from 17p, 19q, and 22q. Gain of material from 8q23 and losses from 19q and 22q have previously been described at high frequencies in bilateral and borderline ovarian carcinomas. The fact that they were present both in “precursor” lesions, i.e., borderline tumors, as well as in tumors of more advanced stages, i.e., carcinomas, highlights the possibility of an adenoma-carcinoma sequence in ovarian carcinogenesis.

Conclusion

Based on the relatively simple genomic changes we identified in the low-grade serous carcinomas examined (n = 7) and which largely corresponded to the aberration pattern formerly identified in borderline tumors, one can interpret the cytogenetic data as supporting the view that the low-grade carcinomas represent a phenotypically more advanced stage of borderline tumors. Whether transition from low-grade to high-grade carcinoma also occurs, is a question about which the genomic data is still inconclusive.
Appendix
Available only for authorised users
Literature
1.
go back to reference Tavassoli FA, Devilee P: World health organization classification of tumors: Pathology and genetics of tumors of the breast and female genital organs. 2003, Lyon: IARC press Tavassoli FA, Devilee P: World health organization classification of tumors: Pathology and genetics of tumors of the breast and female genital organs. 2003, Lyon: IARC press
2.
go back to reference Blaustein A: Blaustein’s Pathology of the Female Genital Tract. 2002, New York: Springer-Verlag Blaustein A: Blaustein’s Pathology of the Female Genital Tract. 2002, New York: Springer-Verlag
3.
go back to reference Kurman RJ, Shih I: The origin and pathogenesis of epithelial ovarian cancer: a proposed unifying theory. Am J Surg Pathol. 2010, 34: 433-443. 10.1097/PAS.0b013e3181cf3d79.CrossRefPubMedPubMedCentral Kurman RJ, Shih I: The origin and pathogenesis of epithelial ovarian cancer: a proposed unifying theory. Am J Surg Pathol. 2010, 34: 433-443. 10.1097/PAS.0b013e3181cf3d79.CrossRefPubMedPubMedCentral
4.
go back to reference Prat J: New insights into ovarian cancer pathology. Ann Oncol. 2012, 23: 111-117. 10.1093/annonc/mdr043.CrossRef Prat J: New insights into ovarian cancer pathology. Ann Oncol. 2012, 23: 111-117. 10.1093/annonc/mdr043.CrossRef
6.
go back to reference Micci F, Weimer J, Haugom L, Skotheim RI, Grunewald R, Abeler VM, Silins I, Lothe RA, Trope CG, Arnold N, Heim S: Reverse painting of microdissected chromosome 19 markers in ovarian carcinoma identifies a complex rearrangement map. Gene Chromosome Canc. 2009, 48: 184-193. 10.1002/gcc.20628.CrossRef Micci F, Weimer J, Haugom L, Skotheim RI, Grunewald R, Abeler VM, Silins I, Lothe RA, Trope CG, Arnold N, Heim S: Reverse painting of microdissected chromosome 19 markers in ovarian carcinoma identifies a complex rearrangement map. Gene Chromosome Canc. 2009, 48: 184-193. 10.1002/gcc.20628.CrossRef
7.
go back to reference Mandahl N: Methods in solid tumors. Human Cytogenetics - a practical approach, vol II, Malignancy and acquired abnormalities. Edited by: Rooney DE, Czepulkovski BH. 1992, Oxford: IRL Press, 155-187. Mandahl N: Methods in solid tumors. Human Cytogenetics - a practical approach, vol II, Malignancy and acquired abnormalities. Edited by: Rooney DE, Czepulkovski BH. 1992, Oxford: IRL Press, 155-187.
8.
go back to reference Shaffer LG, Slovak ML, Campbell LJ: ISCN (2009): An International System for Human Cytogenetic Nomenclature. 2009, Basel: Karger S Shaffer LG, Slovak ML, Campbell LJ: ISCN (2009): An International System for Human Cytogenetic Nomenclature. 2009, Basel: Karger S
9.
go back to reference Brandal P, Bjerkehagen B, Heim S: Molecular cytogenetic characterization of tenosynovial giant cell tumors. Neoplasia. 2004, 6: 578-583. 10.1593/neo.04202.CrossRefPubMedPubMedCentral Brandal P, Bjerkehagen B, Heim S: Molecular cytogenetic characterization of tenosynovial giant cell tumors. Neoplasia. 2004, 6: 578-583. 10.1593/neo.04202.CrossRefPubMedPubMedCentral
10.
go back to reference Kallioniemi OP, Kallioniemi A, Piper J, Isola J, Waldman FM, Gray JW, Pinkel D: Optimizing comparative genomic hybridization for analysis of DNA sequence copy number changes in solid tumors. Gene Chromosome Canc. 1994, 10: 231-243. 10.1002/gcc.2870100403.CrossRef Kallioniemi OP, Kallioniemi A, Piper J, Isola J, Waldman FM, Gray JW, Pinkel D: Optimizing comparative genomic hybridization for analysis of DNA sequence copy number changes in solid tumors. Gene Chromosome Canc. 1994, 10: 231-243. 10.1002/gcc.2870100403.CrossRef
11.
go back to reference Micci F, Teixeira MR, Haugom L, Kristensen G, Abeler VM, Heim S: Genomic aberrations in carcinomas of the uterine corpus. Gene Chromosome Canc. 2004, 40: 229-246. 10.1002/gcc.20038.CrossRef Micci F, Teixeira MR, Haugom L, Kristensen G, Abeler VM, Heim S: Genomic aberrations in carcinomas of the uterine corpus. Gene Chromosome Canc. 2004, 40: 229-246. 10.1002/gcc.20038.CrossRef
12.
go back to reference Micci F, Haugom L, Ahlquist T, Andersen HK, Abeler VM, Davidson B, Trope CG, Lothe RA, Heim S: Genomic aberrations in borderline ovarian tumors. J Transl Med. 2010, 8: 21-10.1186/1479-5876-8-21. doi:10.1186/1479-5876-8-21CrossRefPubMedPubMedCentral Micci F, Haugom L, Ahlquist T, Andersen HK, Abeler VM, Davidson B, Trope CG, Lothe RA, Heim S: Genomic aberrations in borderline ovarian tumors. J Transl Med. 2010, 8: 21-10.1186/1479-5876-8-21. doi:10.1186/1479-5876-8-21CrossRefPubMedPubMedCentral
13.
go back to reference Onkes W, Fredrik R, Micci F, Schonbeck BJ, Martin-Subero JI, Ullmann R, Hilpert F, Brautigam K, Janssen O, Maass N, Siebert R, Heim S, Arnold N, Weimer J: Breakpoint characterization of the der(19)t(11;19)(q13;p13) in the ovarian cancer cell line SKOV-3. Gene Chromosome Canc. 2013, 52: 512-522. 10.1002/gcc.22048.CrossRef Onkes W, Fredrik R, Micci F, Schonbeck BJ, Martin-Subero JI, Ullmann R, Hilpert F, Brautigam K, Janssen O, Maass N, Siebert R, Heim S, Arnold N, Weimer J: Breakpoint characterization of the der(19)t(11;19)(q13;p13) in the ovarian cancer cell line SKOV-3. Gene Chromosome Canc. 2013, 52: 512-522. 10.1002/gcc.22048.CrossRef
14.
go back to reference Pejovic T, Heim S, Mandahl N, Baldetorp B, Elmfors B, Floderus UM, Furgyik S, Helm G, Himmelmann A, Willen H: Chromosome aberrations in 35 primary ovarian carcinomas. Gene Chromosome Canc. 1992, 4: 58-68. 10.1002/gcc.2870040108.CrossRef Pejovic T, Heim S, Mandahl N, Baldetorp B, Elmfors B, Floderus UM, Furgyik S, Helm G, Himmelmann A, Willen H: Chromosome aberrations in 35 primary ovarian carcinomas. Gene Chromosome Canc. 1992, 4: 58-68. 10.1002/gcc.2870040108.CrossRef
15.
go back to reference Jenkins RB, Bartelt D, Stalboerger P, Persons D, Dahl RJ, Podratz K, Keeney G, Hartmann L: Cytogenetic studies of epithelial ovarian carcinoma. Cancer Genet Cytogenet. 1993, 71: 76-86. 10.1016/0165-4608(93)90205-Z.CrossRefPubMed Jenkins RB, Bartelt D, Stalboerger P, Persons D, Dahl RJ, Podratz K, Keeney G, Hartmann L: Cytogenetic studies of epithelial ovarian carcinoma. Cancer Genet Cytogenet. 1993, 71: 76-86. 10.1016/0165-4608(93)90205-Z.CrossRefPubMed
16.
go back to reference Thompson FH, Emerson J, Alberts D, Liu Y, Guan XY, Burgess A, Fox S, Taetle R, Weinstein R, Makar R: Clonal chromosome abnormalities in 54 cases of ovarian carcinoma. Cancer Genet Cytogenet. 1994, 73: 33-45. 10.1016/0165-4608(94)90179-1.CrossRefPubMed Thompson FH, Emerson J, Alberts D, Liu Y, Guan XY, Burgess A, Fox S, Taetle R, Weinstein R, Makar R: Clonal chromosome abnormalities in 54 cases of ovarian carcinoma. Cancer Genet Cytogenet. 1994, 73: 33-45. 10.1016/0165-4608(94)90179-1.CrossRefPubMed
17.
go back to reference Micci F, Skotheim RI, Haugom L, Weimer J, Eibak AM, Abeler VM, Trope CG, Arnold N, Lothe RA, Heim S: Array-CGH analysis of microdissected chromosome 19 markers in ovarian carcinoma identifies candidate target genes. Gene Chromosome Canc. 2010, 49: 1046-1053. 10.1002/gcc.20813.CrossRef Micci F, Skotheim RI, Haugom L, Weimer J, Eibak AM, Abeler VM, Trope CG, Arnold N, Lothe RA, Heim S: Array-CGH analysis of microdissected chromosome 19 markers in ovarian carcinoma identifies candidate target genes. Gene Chromosome Canc. 2010, 49: 1046-1053. 10.1002/gcc.20813.CrossRef
18.
go back to reference Micci F, Haugom L, Ahlquist T, Abeler VM, Trope CG, Lothe RA, Heim S: Tumor spreading to the contralateral ovary in bilateral ovarian carcinoma is a late event in clonal evolution. J Oncol. 2010, 2010: 646340-doi:10.1155CrossRefPubMed Micci F, Haugom L, Ahlquist T, Abeler VM, Trope CG, Lothe RA, Heim S: Tumor spreading to the contralateral ovary in bilateral ovarian carcinoma is a late event in clonal evolution. J Oncol. 2010, 2010: 646340-doi:10.1155CrossRefPubMed
19.
go back to reference Iwabuchi H, Sakamoto M, Sakunaga H, Ma YY, Carcangiu ML, Pinkel D, Yang-Feng TL, Gray JW: Genetic analysis of benign, low-grade, and high-grade ovarian tumors. Cancer Res. 1995, 55: 6172-6180.PubMed Iwabuchi H, Sakamoto M, Sakunaga H, Ma YY, Carcangiu ML, Pinkel D, Yang-Feng TL, Gray JW: Genetic analysis of benign, low-grade, and high-grade ovarian tumors. Cancer Res. 1995, 55: 6172-6180.PubMed
20.
go back to reference Arnold N, Hagele L, Walz L, Schempp W, Pfisterer J, Bauknecht T, Kiechle M: Overrepresentation of 3q and 8q material and loss of 18q material are recurrent findings in advanced human ovarian cancer. Gene Chromosome Canc. 1996, 16: 46-54. 10.1002/(SICI)1098-2264(199605)16:1<46::AID-GCC7>3.0.CO;2-3.CrossRef Arnold N, Hagele L, Walz L, Schempp W, Pfisterer J, Bauknecht T, Kiechle M: Overrepresentation of 3q and 8q material and loss of 18q material are recurrent findings in advanced human ovarian cancer. Gene Chromosome Canc. 1996, 16: 46-54. 10.1002/(SICI)1098-2264(199605)16:1<46::AID-GCC7>3.0.CO;2-3.CrossRef
21.
go back to reference Sonoda G, Palazzo J, Du MS, Godwin AK, Feder M, Yakushiji M, Testa JR: Comparative genomic hybridization detects frequent overrepresentation of chromosomal material from 3q26, 8q24, and 20q13 in human ovarian carcinomas. Gene Chromosome Canc. 1997, 20: 320-328. 10.1002/(SICI)1098-2264(199712)20:4<320::AID-GCC2>3.0.CO;2-3.CrossRef Sonoda G, Palazzo J, Du MS, Godwin AK, Feder M, Yakushiji M, Testa JR: Comparative genomic hybridization detects frequent overrepresentation of chromosomal material from 3q26, 8q24, and 20q13 in human ovarian carcinomas. Gene Chromosome Canc. 1997, 20: 320-328. 10.1002/(SICI)1098-2264(199712)20:4<320::AID-GCC2>3.0.CO;2-3.CrossRef
22.
go back to reference Tapper J, Sarantaus L, Vahteristo P, Nevanlinna H, Hemmer S, Seppala M, Knuutila S, Butzow R: Genetic changes in inherited and sporadic ovarian carcinomas by comparative genomic hybridization: extensive similarity except for a difference at chromosome 2q24-q32. Cancer Res. 1998, 58: 2715-2719.PubMed Tapper J, Sarantaus L, Vahteristo P, Nevanlinna H, Hemmer S, Seppala M, Knuutila S, Butzow R: Genetic changes in inherited and sporadic ovarian carcinomas by comparative genomic hybridization: extensive similarity except for a difference at chromosome 2q24-q32. Cancer Res. 1998, 58: 2715-2719.PubMed
23.
go back to reference Suzuki S, Moore DH, Ginzinger DG, Godfrey TE, Barclay J, Powell B, Pinkel D, Zaloudek C, Lu K, Mills G, Berchuck A, Gray JW: An approach to analysis of large-scale correlations between genome changes and clinical endpoints in ovarian cancer. Cancer Res. 2000, 60: 5382-5385.PubMed Suzuki S, Moore DH, Ginzinger DG, Godfrey TE, Barclay J, Powell B, Pinkel D, Zaloudek C, Lu K, Mills G, Berchuck A, Gray JW: An approach to analysis of large-scale correlations between genome changes and clinical endpoints in ovarian cancer. Cancer Res. 2000, 60: 5382-5385.PubMed
24.
go back to reference Kiechle M, Jacobsen A, Schwarz-Boeger U, Hedderich J, Pfisterer J, Arnold N: Comparative genomic hybridization detects genetic imbalances in primary ovarian carcinomas as correlated with grade of differentiation. Cancer. 2001, 91: 534-540. 10.1002/1097-0142(20010201)91:3<534::AID-CNCR1031>3.0.CO;2-T.CrossRefPubMed Kiechle M, Jacobsen A, Schwarz-Boeger U, Hedderich J, Pfisterer J, Arnold N: Comparative genomic hybridization detects genetic imbalances in primary ovarian carcinomas as correlated with grade of differentiation. Cancer. 2001, 91: 534-540. 10.1002/1097-0142(20010201)91:3<534::AID-CNCR1031>3.0.CO;2-T.CrossRefPubMed
25.
go back to reference Cancer Genome Atlas Research Network: Integrated genomic analyses of ovarian carcinoma. Nature. 2011, 474: 609-615. 10.1038/nature10166.CrossRef Cancer Genome Atlas Research Network: Integrated genomic analyses of ovarian carcinoma. Nature. 2011, 474: 609-615. 10.1038/nature10166.CrossRef
26.
go back to reference Mayr D, Hirschmann A, Lohrs U, Diebold J: KRAS and BRAF mutations in ovarian tumors: a comprehensive study of invasive carcinomas, borderline tumors and extraovarian implants. Gynecol Oncol. 2006, 103: 883-887. 10.1016/j.ygyno.2006.05.029.CrossRefPubMed Mayr D, Hirschmann A, Lohrs U, Diebold J: KRAS and BRAF mutations in ovarian tumors: a comprehensive study of invasive carcinomas, borderline tumors and extraovarian implants. Gynecol Oncol. 2006, 103: 883-887. 10.1016/j.ygyno.2006.05.029.CrossRefPubMed
27.
go back to reference Ardighieri L, Zeppernick F, Hannibal CG, Vang R, Cope L, Junge J, Kjaer SK, Kurman RJ, Shih IM: Mutational analysis of BRAF and KRAS in ovarian atypical proliferative serous (Borderline) tumors and associated peritoneal implants. J Pathol. 2013, 232: 16-22.CrossRef Ardighieri L, Zeppernick F, Hannibal CG, Vang R, Cope L, Junge J, Kjaer SK, Kurman RJ, Shih IM: Mutational analysis of BRAF and KRAS in ovarian atypical proliferative serous (Borderline) tumors and associated peritoneal implants. J Pathol. 2013, 232: 16-22.CrossRef
28.
go back to reference Tsang YT, Deavers MT, Sun CC, Kwan SY, Kuo E, Malpica A, Mok SS, Gershenson DM, Wong KK: KRAS (but not BRAF) mutations in ovarian serous borderline tumor are associated with recurrent low-grade serous carcinoma. J Pathol. 2013, 231: 449-456. 10.1002/path.4252.CrossRefPubMedPubMedCentral Tsang YT, Deavers MT, Sun CC, Kwan SY, Kuo E, Malpica A, Mok SS, Gershenson DM, Wong KK: KRAS (but not BRAF) mutations in ovarian serous borderline tumor are associated with recurrent low-grade serous carcinoma. J Pathol. 2013, 231: 449-456. 10.1002/path.4252.CrossRefPubMedPubMedCentral
Metadata
Title
Genomic profile of ovarian carcinomas
Authors
Francesca Micci
Lisbeth Haugom
Vera M Abeler
Ben Davidson
Claes G Tropé
Sverre Heim
Publication date
01-12-2014
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2014
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-14-315

Other articles of this Issue 1/2014

BMC Cancer 1/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine