Skip to main content
Top
Published in: BMC Cancer 1/2017

Open Access 01-12-2017 | Research article

miRNome landscape analysis reveals a 30 miRNA core in retinoblastoma

Authors: Blanca Elena Castro-Magdonel, Manuela Orjuela, Javier Camacho, Adda Jeanette García-Chéquer, Lourdes Cabrera-Muñoz, Stanislaw Sadowinski-Pine, Noé Durán-Figueroa, María de Jesús Orozco-Romero, Ana Claudia Velázquez-Wong, Adriana Hernández-Ángeles, Claudia Hernández-Galván, Citlali Lara-Molina, M. Verónica Ponce-Castañeda

Published in: BMC Cancer | Issue 1/2017

Login to get access

Abstract

Background

miRNAs exert their effect through a negative regulatory mechanism silencing expression upon hybridizing to their target mRNA, and have a prominent position in the control of many cellular processes including carcinogenesis. Previous miRNA studies on retinoblastoma (Rb) have been limited to specific miRNAs reported in other tumors or to medium density arrays. Here we report expression analysis of the whole miRNome on 12 retinoblastoma tumor samples using a high throughput microarray platform including 2578 mature miRNAs.

Methods

Twelve retinoblastoma tumor samples were analyzed using an Affymetrix platform including 2578 mature miRNAs. We applied RMA analysis to normalize raw data, obtained categorical data from detection call values, and also used signal intensity derived expression data. We used Diana-Tools-microT-CDS to find miRNA targets and ChromDraw to map miRNAs in chromosomes.

Results

We discovered a core-cluster of 30 miRNAs that were highly expressed in all the cases and a cluster of 993 miRNAs that were uniformly absent in all cases. Another 1022 miRNA were variably present in the samples reflecting heterogeneity between tumors. We explored mRNA targets, pathways and biological processes affected by some of these miRNAs. We propose that the core-cluster of 30 miRs represent miRNA machinery common to all Rb, and affecting most pathways considered hallmarks of cancer. In this core, we identified miR-3613 as a potential and critical down regulatory hub, because it is highly expressed in all the samples and its potential mRNA targets include at least 36 tumor suppressor genes, including RB1. In the variably expressed miRNA, 36 were differentially expressed between males and females. Some of the potential pathways targeted by these 36 miRNAs were associated with hormonal production.

Conclusion

These findings indicate that Rb tumor samples share a common miRNA expression profile regardless of tumor heterogeneity, and shed light on potential novel therapeutic targets such as mir-3613 This is the first work to delineate the miRNA landscape in retinoblastoma tumor samples using an unbiased approach.
Appendix
Available only for authorised users
Literature
1.
go back to reference Wei JS, Johansson P, Chen QR, et al. MicroRNA profiling identifies cancer-specific and prognostic signatures in pediatric malignancies. Clin Cancer Res. 2009;15(17):5560–8.CrossRefPubMedPubMedCentral Wei JS, Johansson P, Chen QR, et al. MicroRNA profiling identifies cancer-specific and prognostic signatures in pediatric malignancies. Clin Cancer Res. 2009;15(17):5560–8.CrossRefPubMedPubMedCentral
2.
go back to reference Volinia S, Calin GA, Liu C-G, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A. 2006;103(7):2257–61.CrossRefPubMedPubMedCentral Volinia S, Calin GA, Liu C-G, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A. 2006;103(7):2257–61.CrossRefPubMedPubMedCentral
3.
go back to reference Lü J, Qian J, Chen F, et al. Differential expression of components of the microRNA machinery during mouse organogenesis. Biochem Biophys Res Commun. 2005;334(2):319–23.CrossRefPubMed Lü J, Qian J, Chen F, et al. Differential expression of components of the microRNA machinery during mouse organogenesis. Biochem Biophys Res Commun. 2005;334(2):319–23.CrossRefPubMed
4.
go back to reference Jenkinson H. Retinoblastoma: diagnosis and management—the UK perspective. Arch Dis Child. 2015;100(11):1070–5.CrossRefPubMed Jenkinson H. Retinoblastoma: diagnosis and management—the UK perspective. Arch Dis Child. 2015;100(11):1070–5.CrossRefPubMed
6.
8.
go back to reference Xu X, Jia R, Zhou Y, et al. Microarray-based analysis: Identification of hypoxia-regulated microRNAs in retinoblastoma cells. Int J Oncol. 2011;38(5):1385–93.PubMed Xu X, Jia R, Zhou Y, et al. Microarray-based analysis: Identification of hypoxia-regulated microRNAs in retinoblastoma cells. Int J Oncol. 2011;38(5):1385–93.PubMed
9.
go back to reference Beta M, Venkatesan N, Vasudevan M, et al. Identification and insilico analysis of retinoblastoma serum microRNA profile and gene targets towards prediction of novel serum biomarkers. Bioinform Biol Insights. 2013;7:21–34.PubMedPubMedCentral Beta M, Venkatesan N, Vasudevan M, et al. Identification and insilico analysis of retinoblastoma serum microRNA profile and gene targets towards prediction of novel serum biomarkers. Bioinform Biol Insights. 2013;7:21–34.PubMedPubMedCentral
10.
go back to reference Martin J, Bryar P, Mets M, et al. Differentially expressed miRNAs in retinoblastoma. Gene. 2013;512(2):294–9.CrossRefPubMed Martin J, Bryar P, Mets M, et al. Differentially expressed miRNAs in retinoblastoma. Gene. 2013;512(2):294–9.CrossRefPubMed
11.
go back to reference Jo DH, Kim JH, Cho CS, et al. STAT3 inhibition suppresses proliferation of retinoblastoma through down-regulation of positive feedback loop of STAT3/miR-17-92 clusters. Oncotarget. 2014;5(22):11513–25.CrossRefPubMedPubMedCentral Jo DH, Kim JH, Cho CS, et al. STAT3 inhibition suppresses proliferation of retinoblastoma through down-regulation of positive feedback loop of STAT3/miR-17-92 clusters. Oncotarget. 2014;5(22):11513–25.CrossRefPubMedPubMedCentral
12.
go back to reference Zhao JJ, Yang J, Lin J, et al. Identification of miRNAs associated with tumorigenesis of retinoblastoma by miRNA microarray analysis. Childs Nerv Syst. 2009;25(1):13–20.CrossRefPubMed Zhao JJ, Yang J, Lin J, et al. Identification of miRNAs associated with tumorigenesis of retinoblastoma by miRNA microarray analysis. Childs Nerv Syst. 2009;25(1):13–20.CrossRefPubMed
13.
go back to reference Thériault BL, Dimaras H, Gallie BL, Corson TW. The genomic landscape of retinoblastoma: A review. Clin Exp Ophthalmol. 2014;42(1):33–52.CrossRefPubMed Thériault BL, Dimaras H, Gallie BL, Corson TW. The genomic landscape of retinoblastoma: A review. Clin Exp Ophthalmol. 2014;42(1):33–52.CrossRefPubMed
14.
go back to reference Burrell RA, McGranahan N, Bartek J, Swanton C. The causes and consequences of genetic heterogeneity in cancer evolution. Nature. 2013;501(7467):338–45.CrossRefPubMed Burrell RA, McGranahan N, Bartek J, Swanton C. The causes and consequences of genetic heterogeneity in cancer evolution. Nature. 2013;501(7467):338–45.CrossRefPubMed
15.
16.
go back to reference Orjuela MA, Cabrera-Muñoz L, Paul L, et al. Risk of retinoblastoma is associated with a maternal polymorphism in dihydrofolatereductase (DHFR) and prenatal folic acid intake. Cancer. 2012;118(23):5912–9.CrossRefPubMedPubMedCentral Orjuela MA, Cabrera-Muñoz L, Paul L, et al. Risk of retinoblastoma is associated with a maternal polymorphism in dihydrofolatereductase (DHFR) and prenatal folic acid intake. Cancer. 2012;118(23):5912–9.CrossRefPubMedPubMedCentral
17.
go back to reference Ramírez-Ortiz MA, Ponce-Castañeda MV, Cabrera-Muñoz ML, et al. Diagnostic delay and sociodemographic predictors of stage at diagnosis and mortality in unilateral and bilateral retinoblastoma. Cancer Epidemiol Biomark Prev. 2014;23(5):784–92.CrossRef Ramírez-Ortiz MA, Ponce-Castañeda MV, Cabrera-Muñoz ML, et al. Diagnostic delay and sociodemographic predictors of stage at diagnosis and mortality in unilateral and bilateral retinoblastoma. Cancer Epidemiol Biomark Prev. 2014;23(5):784–92.CrossRef
21.
go back to reference Liu W, Mei R, Di X, et al. Analysis of high density expression microarrays with signed-rank call algorithms. Bioinformatics. 2002;18(12):1593–9.CrossRefPubMed Liu W, Mei R, Di X, et al. Analysis of high density expression microarrays with signed-rank call algorithms. Bioinformatics. 2002;18(12):1593–9.CrossRefPubMed
22.
go back to reference Saeed AI, Sharov V, White J, et al. TM4: a free, open-source system for microarray data management and analysis. BioTechniques. 2003;34(2):374–8.PubMed Saeed AI, Sharov V, White J, et al. TM4: a free, open-source system for microarray data management and analysis. BioTechniques. 2003;34(2):374–8.PubMed
23.
go back to reference Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A. 2001;98(9):5116–21.CrossRefPubMedPubMedCentral Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A. 2001;98(9):5116–21.CrossRefPubMedPubMedCentral
24.
go back to reference Vlachos IS, Zagganas K, Paraskevopoulou MD, et al. DIANA-miRPath v3.0: deciphering microRNA function with experimental support. Nucleic Acids Res. 2015;43(W1):W460–6.CrossRefPubMedPubMedCentral Vlachos IS, Zagganas K, Paraskevopoulou MD, et al. DIANA-miRPath v3.0: deciphering microRNA function with experimental support. Nucleic Acids Res. 2015;43(W1):W460–6.CrossRefPubMedPubMedCentral
26.
go back to reference Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ. miRBase: tools for microRNA genomics. Nucleic Acids Res. 2008;36(Database issue):D154–8.PubMed Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ. miRBase: tools for microRNA genomics. Nucleic Acids Res. 2008;36(Database issue):D154–8.PubMed
28.
go back to reference Zhao M, Kim P, Mitra R, Zhao J, Zhao Z. TSGene 2.0: an updated literature-based knowledgebase for tumor suppressor genes. Nucleic Acids Res. 2016;44(D1):D1023-31. doi: 10.1093/nar/gkv1268. Epub 2015 Nov 20. PubMed PMID: 26590405; PubMed Central PMCID: PMC4702895. Zhao M, Kim P, Mitra R, Zhao J, Zhao Z. TSGene 2.0: an updated literature-based knowledgebase for tumor suppressor genes. Nucleic Acids Res. 2016;44(D1):D1023-31. doi: 10.​1093/​nar/​gkv1268. Epub 2015 Nov 20. PubMed PMID: 26590405; PubMed Central PMCID: PMC4702895.
29.
go back to reference García-Chequer AJ, Méndez-Tenorio A, Olguín-Ruiz G, et al. Overview of recurrent chromosomal losses in retinoblastoma detected by low coverage next generation sequencing. Cancer Genet. 2016;209(3):57–69.CrossRefPubMed García-Chequer AJ, Méndez-Tenorio A, Olguín-Ruiz G, et al. Overview of recurrent chromosomal losses in retinoblastoma detected by low coverage next generation sequencing. Cancer Genet. 2016;209(3):57–69.CrossRefPubMed
31.
go back to reference Chatterjee A, Leichter AL, Fan V, et al. A cross comparison of technologies for the detection of microRNAs in clinical FFPE samples of hepatoblastoma patients. Sci Rep. 2015;5:10438.CrossRefPubMedPubMedCentral Chatterjee A, Leichter AL, Fan V, et al. A cross comparison of technologies for the detection of microRNAs in clinical FFPE samples of hepatoblastoma patients. Sci Rep. 2015;5:10438.CrossRefPubMedPubMedCentral
33.
go back to reference Tanaka K, Kawano M, Itonaga I, et al. Tumor suppressive microRNA-138 inhibits metastatic potential via the targeting of focal adhesion kinase in Ewing’s sarcoma cells. Int J Oncol. 2016;48(3):1135–44.PubMed Tanaka K, Kawano M, Itonaga I, et al. Tumor suppressive microRNA-138 inhibits metastatic potential via the targeting of focal adhesion kinase in Ewing’s sarcoma cells. Int J Oncol. 2016;48(3):1135–44.PubMed
35.
go back to reference Lillington DM, Kingston JE, Coen PG, et al. Comparative genomic hybridization of 49 primary retinoblastoma tumors identifies chromosomal regions associated with histopathology, progression, and patient outcome. Genes Chromosomes Cancer. 2003;36(2):121–8.CrossRefPubMed Lillington DM, Kingston JE, Coen PG, et al. Comparative genomic hybridization of 49 primary retinoblastoma tumors identifies chromosomal regions associated with histopathology, progression, and patient outcome. Genes Chromosomes Cancer. 2003;36(2):121–8.CrossRefPubMed
37.
go back to reference Mol BM, Massink MPG, van der Hout AH, et al. High resolution SNP array profiling identifies variability in retinoblastoma genome stability. Genes Chromosomes Cancer. 2014;53(1):1–14.CrossRefPubMed Mol BM, Massink MPG, van der Hout AH, et al. High resolution SNP array profiling identifies variability in retinoblastoma genome stability. Genes Chromosomes Cancer. 2014;53(1):1–14.CrossRefPubMed
38.
39.
go back to reference Mogilyansky E, Rigoutsos I. The miR-17/92 cluster: a comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease. Cell Death Differ. 2013;20(12):1603–14.CrossRefPubMedPubMedCentral Mogilyansky E, Rigoutsos I. The miR-17/92 cluster: a comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease. Cell Death Differ. 2013;20(12):1603–14.CrossRefPubMedPubMedCentral
40.
go back to reference Witten D, Tibshirani R, Gu SG, et al. Ultra-high throughput sequencing-based small RNA discovery and discrete statistical biomarker analysis in a collection of cervical tumours and matched controls. BMC Biol. 2010;8:58.CrossRefPubMedPubMedCentral Witten D, Tibshirani R, Gu SG, et al. Ultra-high throughput sequencing-based small RNA discovery and discrete statistical biomarker analysis in a collection of cervical tumours and matched controls. BMC Biol. 2010;8:58.CrossRefPubMedPubMedCentral
42.
go back to reference Sato F, Tsuchiya S, Terasawa K, Tsujimoto G. Intra-Platform Repeatability and Inter-Platform Comparability of MicroRNA Microarray Technology. PLoS One. 2009;4(5):e5540.CrossRefPubMedPubMedCentral Sato F, Tsuchiya S, Terasawa K, Tsujimoto G. Intra-Platform Repeatability and Inter-Platform Comparability of MicroRNA Microarray Technology. PLoS One. 2009;4(5):e5540.CrossRefPubMedPubMedCentral
43.
go back to reference Rushlow DE, Mol BM, Kennett JY, Yee S, Pajovic S, Thériault BL, et al. Characterisation of retinoblastomas without RB1 mutations: genomic, gene expression, and clinical studies. Lancet Oncol. 2013;14(4):327–34.CrossRefPubMed Rushlow DE, Mol BM, Kennett JY, Yee S, Pajovic S, Thériault BL, et al. Characterisation of retinoblastomas without RB1 mutations: genomic, gene expression, and clinical studies. Lancet Oncol. 2013;14(4):327–34.CrossRefPubMed
44.
46.
Metadata
Title
miRNome landscape analysis reveals a 30 miRNA core in retinoblastoma
Authors
Blanca Elena Castro-Magdonel
Manuela Orjuela
Javier Camacho
Adda Jeanette García-Chéquer
Lourdes Cabrera-Muñoz
Stanislaw Sadowinski-Pine
Noé Durán-Figueroa
María de Jesús Orozco-Romero
Ana Claudia Velázquez-Wong
Adriana Hernández-Ángeles
Claudia Hernández-Galván
Citlali Lara-Molina
M. Verónica Ponce-Castañeda
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2017
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-017-3421-3

Other articles of this Issue 1/2017

BMC Cancer 1/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine