Skip to main content
Top
Published in: BMC Cancer 1/2017

Open Access 01-12-2017 | Research article

A rapid and quantitative method to detect human circulating tumor cells in a preclinical animal model

Authors: Shih-Hsin Tu, Yi-Chen Hsieh, Li-Chi Huang, Chun-Yu Lin, Kai-Wen Hsu, Wen-Shyang Hsieh, Wei-Ming Chi, Chia-Hwa Lee

Published in: BMC Cancer | Issue 1/2017

Login to get access

Abstract

Background

As cancer metastasis is the deadliest aspect of cancer, causing 90% of human deaths, evaluating the molecular mechanisms underlying this process is the major interest to those in the drug development field. Both therapeutic target identification and proof-of-concept experimentation in anti-cancer drug development require appropriate animal models, such as xenograft tumor transplantation in transgenic and knockout mice. In the progression of cancer metastasis, circulating tumor cells (CTCs) are the most critical factor in determining the prognosis of cancer patients. Several studies have demonstrated that measuring CTC-specific markers in a clinical setting (e.g., flow cytometry) can provide a current status of cancer development in patients. However, this useful technique has rarely been applied in the real-time monitoring of CTCs in preclinical animal models.

Methods

In this study, we designed a rapid and reliable detection method by combining a bioluminescent in vivo imaging system (IVIS) and quantitative polymerase chain reaction (QPCR)-based analysis to measure CTCs in animal blood. Using the IVIS Spectrum CT System with 3D–imaging on orthotropic-developed breast-tumor-bearing mice.

Results

In this manuscript, we established a quick and reliable method for measuring CTCs in a preclinical animal mode. The key to this technique is the use of specific human and mouse GUS primers on DNA/RNA of mouse peripheral blood under an absolute qPCR system. First, the high sensitivity of cancer cell detection on IVIS was presented by measuring the luciferase carried MDA-MB-231 cells from 5 to 5x1011 cell numbers with great correlation (R2 = 0.999). Next, the MDA-MB-231 cell numbers injected by tail vein and their IVIS radiance signals were strongly corrected with qPCR-calculated copy numbers (R2 > 0.99). Furthermore, by applying an orthotropic implantation animal model, we successfully distinguished xenograft tumor-bearing mice and control mice with a significant difference (p < 0.001), whereas IVIS Spectrum-CT 3D–visualization showed that blood of mice with lung metastasis contained more than twice the CTC numbers than ordinary tumor-bearing mice. We demonstrated a positive correlation between lung metastasis status and CTC numbers in peripheral mouse blood.

Conclusion

Collectively, the techniques developed for this study resulted in the integration of CTC assessments into preclinical models both in vivo and ex vivo, which will facilitate translational targeted therapy in clinical practice.
Appendix
Available only for authorised users
Literature
1.
go back to reference Spano D, Heck C, De Antonellis P, Christofori G, Zollo M. Molecular networks that regulate cancer metastasis. Semin Cancer Biol. 2012;22(3):234–49.CrossRefPubMed Spano D, Heck C, De Antonellis P, Christofori G, Zollo M. Molecular networks that regulate cancer metastasis. Semin Cancer Biol. 2012;22(3):234–49.CrossRefPubMed
2.
go back to reference Yu M, Stott S, Toner M, Maheswaran S, Haber DA. Circulating tumor cells: approaches to isolation and characterization. J Cell Biol. 2011;192(3):373–82.CrossRefPubMedPubMedCentral Yu M, Stott S, Toner M, Maheswaran S, Haber DA. Circulating tumor cells: approaches to isolation and characterization. J Cell Biol. 2011;192(3):373–82.CrossRefPubMedPubMedCentral
3.
go back to reference Zhe X, Cher ML, Bonfil RD. Circulating tumor cells: finding the needle in the haystack. Am J Cancer Res. 2011;1(6):740–51.PubMedPubMedCentral Zhe X, Cher ML, Bonfil RD. Circulating tumor cells: finding the needle in the haystack. Am J Cancer Res. 2011;1(6):740–51.PubMedPubMedCentral
4.
5.
go back to reference Nguyen DX, Massague J. Genetic determinants of cancer metastasis. Nat Rev Genet. 2007;8(5):341–52.CrossRefPubMed Nguyen DX, Massague J. Genetic determinants of cancer metastasis. Nat Rev Genet. 2007;8(5):341–52.CrossRefPubMed
6.
go back to reference Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2(6):442–54.CrossRefPubMed Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2(6):442–54.CrossRefPubMed
7.
go back to reference Huber MA, Kraut N, Beug H. Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol. 2005;17(5):548–58.CrossRefPubMed Huber MA, Kraut N, Beug H. Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol. 2005;17(5):548–58.CrossRefPubMed
8.
go back to reference Nguyen DX, Bos PD, Massague J. Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer. 2009;9(4):274–84.CrossRefPubMed Nguyen DX, Bos PD, Massague J. Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer. 2009;9(4):274–84.CrossRefPubMed
9.
10.
go back to reference Gupta GP, Nguyen DX, Chiang AC, Bos PD, Kim JY, Nadal C, et al. Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature. 2007;446(7137):765–70.CrossRefPubMed Gupta GP, Nguyen DX, Chiang AC, Bos PD, Kim JY, Nadal C, et al. Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature. 2007;446(7137):765–70.CrossRefPubMed
11.
go back to reference Thakur RK, Yadav VK, Kumar A, Singh A, Pal K, Hoeppner L, et al. Non-metastatic 2 (NME2)-mediated suppression of lung cancer metastasis involves transcriptional regulation of key cell adhesion factor vinculin. Nucleic Acids Res. 2014;42(18):11589–600.CrossRefPubMedPubMedCentral Thakur RK, Yadav VK, Kumar A, Singh A, Pal K, Hoeppner L, et al. Non-metastatic 2 (NME2)-mediated suppression of lung cancer metastasis involves transcriptional regulation of key cell adhesion factor vinculin. Nucleic Acids Res. 2014;42(18):11589–600.CrossRefPubMedPubMedCentral
12.
13.
go back to reference Scher HI, Heller G, Molina A, Attard G, Danila DC, Jia X, et al. Circulating tumor cell biomarker panel as an individual-level surrogate for survival in metastatic castration-resistant prostate cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2015;33(12):1348–55.CrossRef Scher HI, Heller G, Molina A, Attard G, Danila DC, Jia X, et al. Circulating tumor cell biomarker panel as an individual-level surrogate for survival in metastatic castration-resistant prostate cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2015;33(12):1348–55.CrossRef
14.
go back to reference Okabe H, Tsunoda S, Hosogi H, Hisamori S, Tanaka E, Tanaka S, Sakai Y. Circulating Tumor Cells as an Independent Predictor of Survival in Advanced Gastric Cancer. Ann Surg Oncol. 2015;22(12):3954-61. doi:10.1245/s10434-015-4483-6. Epub 2015 Mar 17. Okabe H, Tsunoda S, Hosogi H, Hisamori S, Tanaka E, Tanaka S, Sakai Y. Circulating Tumor Cells as an Independent Predictor of Survival in Advanced Gastric Cancer. Ann Surg Oncol. 2015;22(12):3954-61. doi:10.​1245/​s10434-015-4483-6. Epub 2015 Mar 17.
15.
go back to reference Lee D, Na J, Ryu J, Kim HJ, Nam SH, Kang M, Jung JW, Lee MS, Song HE, Choi J, et al. Interaction of tetraspan(in) TM4SF5 with CD44 promotes self-renewal and circulating capacities of hepatocarcinoma cells. Hepatology. 2015;61(6):1978-97. doi:10.1002/hep.27721. Epub 2015 Mar 18. Lee D, Na J, Ryu J, Kim HJ, Nam SH, Kang M, Jung JW, Lee MS, Song HE, Choi J, et al. Interaction of tetraspan(in) TM4SF5 with CD44 promotes self-renewal and circulating capacities of hepatocarcinoma cells. Hepatology. 2015;61(6):1978-97. doi:10.​1002/​hep.​27721. Epub 2015 Mar 18.
16.
go back to reference Waters PS, Dwyer RM, Brougham C, Glynn CL, Wall D, Hyland P, et al. Impact of tumour epithelial subtype on circulating microRNAs in breast cancer patients. PLoS One. 2014;9(3):e90605.CrossRefPubMedPubMedCentral Waters PS, Dwyer RM, Brougham C, Glynn CL, Wall D, Hyland P, et al. Impact of tumour epithelial subtype on circulating microRNAs in breast cancer patients. PLoS One. 2014;9(3):e90605.CrossRefPubMedPubMedCentral
17.
go back to reference Steinert G, Scholch S, Niemietz T, Iwata N, Garcia SA, Behrens B, et al. Immune escape and survival mechanisms in circulating tumor cells of colorectal cancer. Cancer Res. 2014;74(6):1694–704.CrossRefPubMed Steinert G, Scholch S, Niemietz T, Iwata N, Garcia SA, Behrens B, et al. Immune escape and survival mechanisms in circulating tumor cells of colorectal cancer. Cancer Res. 2014;74(6):1694–704.CrossRefPubMed
18.
go back to reference Xi L, Nicastri DG, El-Hefnawy T, Hughes SJ, Luketich JD, Godfrey TE. Optimal markers for real-time quantitative reverse transcription PCR detection of circulating tumor cells from melanoma, breast, colon, esophageal, head and neck, and lung cancers. Clin Chem. 2007;53(7):1206–15.CrossRefPubMed Xi L, Nicastri DG, El-Hefnawy T, Hughes SJ, Luketich JD, Godfrey TE. Optimal markers for real-time quantitative reverse transcription PCR detection of circulating tumor cells from melanoma, breast, colon, esophageal, head and neck, and lung cancers. Clin Chem. 2007;53(7):1206–15.CrossRefPubMed
19.
go back to reference de Kok JB, Roelofs RW, Giesendorf BA, Pennings JL, Waas ET, Feuth T, Swinkels DW, Span PN: Normalization of gene expression measurements in tumor tissues: comparison of 13 endogenous control genes. Laboratory investigation; a journal of technical methods and pathology 2005, 85(1):154–159. de Kok JB, Roelofs RW, Giesendorf BA, Pennings JL, Waas ET, Feuth T, Swinkels DW, Span PN: Normalization of gene expression measurements in tumor tissues: comparison of 13 endogenous control genes. Laboratory investigation; a journal of technical methods and pathology 2005, 85(1):154–159.
20.
go back to reference John M, Geick A, Hadwiger P, Vornlocher HP, Heidenreich O: Gene silencing by RNAi in mammalian cells. Curr Protoc Mol Biol 2003, Chapter 26:Unit 26 22. John M, Geick A, Hadwiger P, Vornlocher HP, Heidenreich O: Gene silencing by RNAi in mammalian cells. Curr Protoc Mol Biol 2003, Chapter 26:Unit 26 22.
21.
go back to reference Sher YP, Shih JY, Yang PC, Roffler SR, Chu YW, Wu CW, et al. Prognosis of non-small cell lung cancer patients by detecting circulating cancer cells in the peripheral blood with multiple marker genes. Clinical cancer research : an official journal of the American Association for Cancer Research. 2005;11(1):173–9. Sher YP, Shih JY, Yang PC, Roffler SR, Chu YW, Wu CW, et al. Prognosis of non-small cell lung cancer patients by detecting circulating cancer cells in the peripheral blood with multiple marker genes. Clinical cancer research : an official journal of the American Association for Cancer Research. 2005;11(1):173–9.
22.
go back to reference Koyanagi K, Kuo C, Nakagawa T, Mori T, Ueno H, Lorico AR Jr, et al. Multimarker quantitative real-time PCR detection of circulating melanoma cells in peripheral blood: relation to disease stage in melanoma patients. Clin Chem. 2005;51(6):981–8.CrossRefPubMedPubMedCentral Koyanagi K, Kuo C, Nakagawa T, Mori T, Ueno H, Lorico AR Jr, et al. Multimarker quantitative real-time PCR detection of circulating melanoma cells in peripheral blood: relation to disease stage in melanoma patients. Clin Chem. 2005;51(6):981–8.CrossRefPubMedPubMedCentral
23.
go back to reference Kaganoi J, Shimada Y, Kano M, Okumura T, Watanabe G, Imamura M. Detection of circulating oesophageal squamous cancer cells in peripheral blood and its impact on prognosis. Br J Surg. 2004;91(8):1055–60.CrossRefPubMed Kaganoi J, Shimada Y, Kano M, Okumura T, Watanabe G, Imamura M. Detection of circulating oesophageal squamous cancer cells in peripheral blood and its impact on prognosis. Br J Surg. 2004;91(8):1055–60.CrossRefPubMed
24.
go back to reference Iinuma H, Okinaga K, Egami H, Mimori K, Hayashi N, Nishida K, et al. Usefulness and clinical significance of quantitative real-time RT-PCR to detect isolated tumor cells in the peripheral blood and tumor drainage blood of patients with colorectal cancer. Int J Oncol. 2006;28(2):297–306.PubMed Iinuma H, Okinaga K, Egami H, Mimori K, Hayashi N, Nishida K, et al. Usefulness and clinical significance of quantitative real-time RT-PCR to detect isolated tumor cells in the peripheral blood and tumor drainage blood of patients with colorectal cancer. Int J Oncol. 2006;28(2):297–306.PubMed
25.
go back to reference Masuda TA, Kataoka A, Ohno S, Murakami S, Mimori K, Utsunomiya T, et al. Detection of occult cancer cells in peripheral blood and bone marrow by quantitative RT-PCR assay for cytokeratin-7 in breast cancer patients. Int J Oncol. 2005;26(3):721–30.PubMed Masuda TA, Kataoka A, Ohno S, Murakami S, Mimori K, Utsunomiya T, et al. Detection of occult cancer cells in peripheral blood and bone marrow by quantitative RT-PCR assay for cytokeratin-7 in breast cancer patients. Int J Oncol. 2005;26(3):721–30.PubMed
26.
go back to reference Marathe SV, McEwen JE. Vectors with the gus reporter gene for identifying and quantitating promoter regions in Saccharomyces cerevisiae. Gene. 1995;154(1):105–7.CrossRefPubMed Marathe SV, McEwen JE. Vectors with the gus reporter gene for identifying and quantitating promoter regions in Saccharomyces cerevisiae. Gene. 1995;154(1):105–7.CrossRefPubMed
27.
go back to reference Morton CL, Houghton PJ. Establishment of human tumor xenografts in immunodeficient mice. Nat Protoc. 2007;2(2):247–50.CrossRefPubMed Morton CL, Houghton PJ. Establishment of human tumor xenografts in immunodeficient mice. Nat Protoc. 2007;2(2):247–50.CrossRefPubMed
Metadata
Title
A rapid and quantitative method to detect human circulating tumor cells in a preclinical animal model
Authors
Shih-Hsin Tu
Yi-Chen Hsieh
Li-Chi Huang
Chun-Yu Lin
Kai-Wen Hsu
Wen-Shyang Hsieh
Wei-Ming Chi
Chia-Hwa Lee
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2017
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-017-3419-x

Other articles of this Issue 1/2017

BMC Cancer 1/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine