Skip to main content
Top
Published in: BMC Cancer 1/2017

Open Access 01-12-2017 | Research article

The unique C- and N-terminal sequences of Metallothionein isoform 3 mediate growth inhibition and Vectorial active transport in MCF-7 cells

Authors: Brent Voels, Liping Wang, Donald A. Sens, Scott H. Garrett, Ke Zhang, Seema Somji

Published in: BMC Cancer | Issue 1/2017

Login to get access

Abstract

Background

The 3rd isoform of the metallothionein (MT3) gene family has been shown to be overexpressed in most ductal breast cancers. A previous study has shown that the stable transfection of MCF-7 cells with the MT3 gene inhibits cell growth. The goal of the present study was to determine the role of the unique C-terminal and N-terminal sequences of MT3 on phenotypic properties and gene expression profiles of MCF-7 cells.

Methods

MCF-7 cells were transfected with various metallothionein gene constructs which contain the insertion or the removal of the unique MT3 C- and N-terminal domains. Global gene expression analysis was performed on the MCF-7 cells containing the various constructs and the expression of the unique C- and N- terminal domains of MT3 was correlated to phenotypic properties of the cells.

Results

The results of the present study demonstrate that the C-terminal sequence of MT3, in the absence of the N-terminal sequence, induces dome formation in MCF-7 cells, which in cell cultures is the phenotypic manifestation of a cell’s ability to perform vectorial active transport. Global gene expression analysis demonstrated that the increased expression of the GAGE gene family correlated with dome formation. Expression of the C-terminal domain induced GAGE gene expression, whereas the N-terminal domain inhibited GAGE gene expression and that the effect of the N-terminal domain inhibition was dominant over the C-terminal domain of MT3. Transfection with the metallothionein 1E gene increased the expression of GAGE genes. In addition, both the C- and the N-terminal sequences of the MT3 gene had growth inhibitory properties, which correlated to an increased expression of the interferon alpha-inducible protein 6.

Conclusions

Our study shows that the C-terminal domain of MT3 confers dome formation in MCF-7 cells and the presence of this domain induces expression of the GAGE family of genes. The differential effects of MT3 and metallothionein 1E on the expression of GAGE genes suggests unique roles of these genes in the development and progression of breast cancer. The finding that interferon alpha-inducible protein 6 expression is associated with the ability of MT3 to inhibit growth needs further investigation.
Appendix
Available only for authorised users
Literature
2.
go back to reference Klaassen CD, Liu J, Choudhuri S. Metallothionein: an intracellular protein to protect against cadmium toxicity. Annu Rev Pharmacol Toxicol. 1999;39:267–94.CrossRefPubMed Klaassen CD, Liu J, Choudhuri S. Metallothionein: an intracellular protein to protect against cadmium toxicity. Annu Rev Pharmacol Toxicol. 1999;39:267–94.CrossRefPubMed
3.
go back to reference Andrews GK. Regulation of metallothionein gene expression by oxidative stress and metal ions. Biochem Pharmacol. 2000;59(1):95–104.CrossRefPubMed Andrews GK. Regulation of metallothionein gene expression by oxidative stress and metal ions. Biochem Pharmacol. 2000;59(1):95–104.CrossRefPubMed
4.
go back to reference Searle PF, Davison BL, Stuart GW, Wilkie TM, Norstedt G, Palmiter RD. Regulation, linkage, and sequence of mouse metallothionein I and II genes. Mol Cell Biol. 1984;4(7):1221–30.CrossRefPubMedPubMedCentral Searle PF, Davison BL, Stuart GW, Wilkie TM, Norstedt G, Palmiter RD. Regulation, linkage, and sequence of mouse metallothionein I and II genes. Mol Cell Biol. 1984;4(7):1221–30.CrossRefPubMedPubMedCentral
5.
go back to reference Kagi JH, Kojima Y. Chemistry and biochemistry of metallothionein. Experimentia Suppl. 1987;52:25–61.CrossRef Kagi JH, Kojima Y. Chemistry and biochemistry of metallothionein. Experimentia Suppl. 1987;52:25–61.CrossRef
6.
go back to reference Quaife CJ, Findley SD, Erickson JC, Froelick GJ, Kelly EJ, Zambrowicz BP, et al. Induction of a new metallothionein isoform (MT-IV) occurs during differentiation of stratified squamous epithelia. Biochemistry. 1994;33(24):7250–9. Quaife CJ, Findley SD, Erickson JC, Froelick GJ, Kelly EJ, Zambrowicz BP, et al. Induction of a new metallothionein isoform (MT-IV) occurs during differentiation of stratified squamous epithelia. Biochemistry. 1994;33(24):7250–9.
7.
go back to reference Palmiter RD, Findley SD, Whitmore TE, Durnam DM. MT-III, a brain-specific member of the metallothionein gene family. Proc Natl Acad Sci U S A. 1992;89(14):6333–7.CrossRefPubMedPubMedCentral Palmiter RD, Findley SD, Whitmore TE, Durnam DM. MT-III, a brain-specific member of the metallothionein gene family. Proc Natl Acad Sci U S A. 1992;89(14):6333–7.CrossRefPubMedPubMedCentral
8.
go back to reference Sadhu C, Gedamu L. Regulation of human metallothionein (MT) genes. Differential expression of MTI-F, MTI-G, and MTII-A genes in the hepatoblastoma cell line (HEPG2). J Biol Chem. 1988;263(6):2679–84.PubMed Sadhu C, Gedamu L. Regulation of human metallothionein (MT) genes. Differential expression of MTI-F, MTI-G, and MTII-A genes in the hepatoblastoma cell line (HEPG2). J Biol Chem. 1988;263(6):2679–84.PubMed
9.
go back to reference West AK, Stallings R, Hildebrand CE, Chiu R, Karin M, Richards R. Human metallothionein genes: structure of the functional locus at 16q13. Genomics. 1990;8(3):513–8.CrossRefPubMed West AK, Stallings R, Hildebrand CE, Chiu R, Karin M, Richards R. Human metallothionein genes: structure of the functional locus at 16q13. Genomics. 1990;8(3):513–8.CrossRefPubMed
10.
go back to reference Stennard FA, Holloway AF, Hamilton J, West AK. Characterization of six additional human metallothionein genes. Biochim Biophys Acta. 1994;1218(3):357–65.CrossRefPubMed Stennard FA, Holloway AF, Hamilton J, West AK. Characterization of six additional human metallothionein genes. Biochim Biophys Acta. 1994;1218(3):357–65.CrossRefPubMed
11.
go back to reference Sewell AK, Jensen LT, Erickson JC, Palmiter RD, Winge DR. The bioactivity of metallothionein-3 correlates with its novel β domain sequence rather than metal binding properties. Biochemistry. 1995;34(14):4740–7.CrossRefPubMed Sewell AK, Jensen LT, Erickson JC, Palmiter RD, Winge DR. The bioactivity of metallothionein-3 correlates with its novel β domain sequence rather than metal binding properties. Biochemistry. 1995;34(14):4740–7.CrossRefPubMed
12.
go back to reference Jasani B, Schmid KW. Significance of metallothionein overexpression in human tumours. Histopathology. 1997;31(3):211–4.CrossRefPubMed Jasani B, Schmid KW. Significance of metallothionein overexpression in human tumours. Histopathology. 1997;31(3):211–4.CrossRefPubMed
13.
go back to reference Theocharis SE, Margeli AP, Klijanlenko JT, Kouraklis GP. Metallothionein expression in human neoplasia. Histopathol. 2004;45(2):103–18.CrossRef Theocharis SE, Margeli AP, Klijanlenko JT, Kouraklis GP. Metallothionein expression in human neoplasia. Histopathol. 2004;45(2):103–18.CrossRef
14.
go back to reference Tsuji S, Kobayashi H, Uchida Y, Ihara Y, Miyatake T. Molecular cloning of human growth inhibitory factor cDNA and its down-regulation in Alzheimer’s disease. EMBO J. 1992;11(13):4843–50.PubMedPubMedCentral Tsuji S, Kobayashi H, Uchida Y, Ihara Y, Miyatake T. Molecular cloning of human growth inhibitory factor cDNA and its down-regulation in Alzheimer’s disease. EMBO J. 1992;11(13):4843–50.PubMedPubMedCentral
15.
go back to reference Uchida Y, Takio K, Titani K, Ihara Y, Tomonaga M. The growth inhibitory factor that is deficient in Alzheimer’s disease is a 68 amino acid metallothionein-like protein. Neuron. 1991;7(2):337–47.CrossRefPubMed Uchida Y, Takio K, Titani K, Ihara Y, Tomonaga M. The growth inhibitory factor that is deficient in Alzheimer’s disease is a 68 amino acid metallothionein-like protein. Neuron. 1991;7(2):337–47.CrossRefPubMed
16.
go back to reference Garrett SH, Sens MA, Todd JH, Somji S, Sens DA. Expression of MT3 protein in the human kidney. Toxicol Lett. 1999;105(3):207–14.CrossRefPubMed Garrett SH, Sens MA, Todd JH, Somji S, Sens DA. Expression of MT3 protein in the human kidney. Toxicol Lett. 1999;105(3):207–14.CrossRefPubMed
17.
go back to reference Amoureux MC, Wurch T, Pauwels PJ. Modulation of metallothionein-III mRNA content and growth rate of rat C6-glial cells by transfection with human 5-HT1D receptor genes. Biochem Biophys Res Comm. 1995;214(2):639–45.CrossRefPubMed Amoureux MC, Wurch T, Pauwels PJ. Modulation of metallothionein-III mRNA content and growth rate of rat C6-glial cells by transfection with human 5-HT1D receptor genes. Biochem Biophys Res Comm. 1995;214(2):639–45.CrossRefPubMed
18.
go back to reference Sens MA, Somji S, Garrett SH, Sens DA. Metallothionein isoform 3 (MT3) overexpression is associated with breast cancers having a poor prognosis. Am J Pathol. 2001;159(1):21–6.CrossRefPubMedPubMedCentral Sens MA, Somji S, Garrett SH, Sens DA. Metallothionein isoform 3 (MT3) overexpression is associated with breast cancers having a poor prognosis. Am J Pathol. 2001;159(1):21–6.CrossRefPubMedPubMedCentral
19.
go back to reference Somji S, Garrett SH, Zhou XD, Zheng Y, Sens DA, Sens MA. Absence of metallothionein 3 expression in breast cancer is a rare, but favorable marker of outcome that is under epigenetic control. Toxicol Environ Chem. 2010;92(9):1673–95.CrossRefPubMedPubMedCentral Somji S, Garrett SH, Zhou XD, Zheng Y, Sens DA, Sens MA. Absence of metallothionein 3 expression in breast cancer is a rare, but favorable marker of outcome that is under epigenetic control. Toxicol Environ Chem. 2010;92(9):1673–95.CrossRefPubMedPubMedCentral
20.
go back to reference Dziegiel P, Pula B, Kobierzycki C, Stasiolek M, Podhorska-Okolow M. Metallothioneins in normal and cancer cells. Adv Anat Embryol Cell Biol. 2016;218:1–117.CrossRefPubMed Dziegiel P, Pula B, Kobierzycki C, Stasiolek M, Podhorska-Okolow M. Metallothioneins in normal and cancer cells. Adv Anat Embryol Cell Biol. 2016;218:1–117.CrossRefPubMed
21.
go back to reference Gomulkiewicz A, Jablonska K, Pula B, Grzegrzolka J, Borska S, Podhorska-Okolow M, et al. Expression of metallothionein 3 in ductal breast cancer. Int J Oncol. 2016;49(6):2487–97. Gomulkiewicz A, Jablonska K, Pula B, Grzegrzolka J, Borska S, Podhorska-Okolow M, et al. Expression of metallothionein 3 in ductal breast cancer. Int J Oncol. 2016;49(6):2487–97.
22.
go back to reference Kmiecik AM, Pula B, Suchanski J, Olbromski M, Gomulkiewicz A, Owczarek T, et al. Metallothionein-3 increases triple negative breast cancer cell invasiveness via induction of metalloproteinase expression. PLoS One. 2015;10(5):e0124865. Kmiecik AM, Pula B, Suchanski J, Olbromski M, Gomulkiewicz A, Owczarek T, et al. Metallothionein-3 increases triple negative breast cancer cell invasiveness via induction of metalloproteinase expression. PLoS One. 2015;10(5):e0124865.
23.
go back to reference Tao YF, Xu LX, Lu J, Cao L, Li ZH, Hu SY, et al. Metallothionein III (MT3) is a putative tumor suppressor gene that is frequently inactivated in pediatric acute myeloid leukemia by promoter hypermethylation. J Transl Med. 2014;12:182. Tao YF, Xu LX, Lu J, Cao L, Li ZH, Hu SY, et al. Metallothionein III (MT3) is a putative tumor suppressor gene that is frequently inactivated in pediatric acute myeloid leukemia by promoter hypermethylation. J Transl Med. 2014;12:182.
24.
go back to reference Denizot F, Lang R. Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods. 1986;89(2):271–7.CrossRefPubMed Denizot F, Lang R. Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods. 1986;89(2):271–7.CrossRefPubMed
25.
go back to reference Slusser A, Bathula CS, Sens DA, Somji S, Sens MA, Zhou XD, et al. Cadherin expression, vectorial active transport, and metallothionein isoform 3 mediated EMT/MET responses in cultured primary and immortalized human proximal tubule cells. PLoS One. 2015;10(3):e0120132. Slusser A, Bathula CS, Sens DA, Somji S, Sens MA, Zhou XD, et al. Cadherin expression, vectorial active transport, and metallothionein isoform 3 mediated EMT/MET responses in cultured primary and immortalized human proximal tubule cells. PLoS One. 2015;10(3):e0120132.
26.
go back to reference Sandquist EJ, Somji S, Dunlevy JR, Garrett SH, Zhou X, Slusser-Nore A, et al. Loss of N-cadherin expression in tumor transplants produced from as+3- and cd+2-transformed human urothelial (UROtsa) cell lines. PLoS One. 2016;11(5):e0156310. Sandquist EJ, Somji S, Dunlevy JR, Garrett SH, Zhou X, Slusser-Nore A, et al. Loss of N-cadherin expression in tumor transplants produced from as+3- and cd+2-transformed human urothelial (UROtsa) cell lines. PLoS One. 2016;11(5):e0156310.
27.
go back to reference Bathula CS, Garrett SH, Zhou XD, Sens MA, Sens DA, Somji S. Cadmium, vectorial active transport, and MT3-dependent regulation of cadherin expression in human proximal tubule cells. Toxicol Sci. 2008;102(2):310–8.CrossRefPubMed Bathula CS, Garrett SH, Zhou XD, Sens MA, Sens DA, Somji S. Cadmium, vectorial active transport, and MT3-dependent regulation of cadherin expression in human proximal tubule cells. Toxicol Sci. 2008;102(2):310–8.CrossRefPubMed
28.
go back to reference Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Sci U S A. 2001;98(9):5116–21.CrossRef Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Sci U S A. 2001;98(9):5116–21.CrossRef
29.
go back to reference Lever JE. Inducers of dome formation in epithelial cell cultures including agents that cause differentiation. In: Taub M, editor. Tissue culture of epithelial cells. New York: Plenum Press; 1985. p. 3–22.CrossRef Lever JE. Inducers of dome formation in epithelial cell cultures including agents that cause differentiation. In: Taub M, editor. Tissue culture of epithelial cells. New York: Plenum Press; 1985. p. 3–22.CrossRef
30.
go back to reference Blackburn JG, Hazen-Martin DJ, Detrisac DJ, Sens DA. Electrophysiology and ultrastructure of cultured human proximal tubule cells. Kidney Int. 1988;33(2):508–16.CrossRefPubMed Blackburn JG, Hazen-Martin DJ, Detrisac DJ, Sens DA. Electrophysiology and ultrastructure of cultured human proximal tubule cells. Kidney Int. 1988;33(2):508–16.CrossRefPubMed
31.
go back to reference Sens DA, Detrisac CJ, Sens MA, Rossi MR, Wenger SL, Todd JH. Tissue culture of human renal epithelial cells using a defined serum-free growth formulation. Exper Nephrol. 1999;7(5–6):344–52.CrossRef Sens DA, Detrisac CJ, Sens MA, Rossi MR, Wenger SL, Todd JH. Tissue culture of human renal epithelial cells using a defined serum-free growth formulation. Exper Nephrol. 1999;7(5–6):344–52.CrossRef
32.
go back to reference Friedline JA, Garrett SH, Somji S, Todd JH, Sens DA. Differential expression of the MT-1E gene in estrogen-receptor-positive and -negative human breast cancer cell lines. Am J Pathol. 1998;152(1):23–7.PubMedPubMedCentral Friedline JA, Garrett SH, Somji S, Todd JH, Sens DA. Differential expression of the MT-1E gene in estrogen-receptor-positive and -negative human breast cancer cell lines. Am J Pathol. 1998;152(1):23–7.PubMedPubMedCentral
33.
go back to reference Gjerstorff MF, Ditzel HJ. An overview of the GAGE cancer/testis antigen family with the inclusion of newly identified members. Tissue Antigens. 2008;71(3):187–92.CrossRefPubMed Gjerstorff MF, Ditzel HJ. An overview of the GAGE cancer/testis antigen family with the inclusion of newly identified members. Tissue Antigens. 2008;71(3):187–92.CrossRefPubMed
34.
go back to reference Killen MW, Taylor TL, Stults DM, Jin W, Wang LL, Moscow JA, et al. Configuration and rearrangement of the human GAGE gene clusters. Am J Transl Res. 2011;3(3):234–42. Killen MW, Taylor TL, Stults DM, Jin W, Wang LL, Moscow JA, et al. Configuration and rearrangement of the human GAGE gene clusters. Am J Transl Res. 2011;3(3):234–42.
35.
go back to reference Cilensek ZM, Yehiely F, Kular RK, Deiss LP. A member of the GAGE family of tumor antigens is an anti-apoptotic gene that confers resistance to fas/CD95/APO-1, interferon-gamma, taxol and gamma-irradiation. Cancer Biol Ther. 2002;1(4):380–7.CrossRefPubMed Cilensek ZM, Yehiely F, Kular RK, Deiss LP. A member of the GAGE family of tumor antigens is an anti-apoptotic gene that confers resistance to fas/CD95/APO-1, interferon-gamma, taxol and gamma-irradiation. Cancer Biol Ther. 2002;1(4):380–7.CrossRefPubMed
36.
go back to reference Simpson AJ, Caballero OL, Jungbluth A, Chen YT, Old LJ. Cancer/testis antigens, gametogenesis and cancer. Nat Rev Cancer. 2005;5(8):615–25.CrossRefPubMed Simpson AJ, Caballero OL, Jungbluth A, Chen YT, Old LJ. Cancer/testis antigens, gametogenesis and cancer. Nat Rev Cancer. 2005;5(8):615–25.CrossRefPubMed
37.
go back to reference Gjerstorff MF, Johansen LE, Nielsen O, Kock K, Ditzel HJ. Restriction of GAGE protein expression to subpopulations of cancer cells is independent of genotype and may limit the use of GAGE proteins as targets for cancer immunotherapy. Br J Cancer. 2006;94(12):1864–73.CrossRefPubMedPubMedCentral Gjerstorff MF, Johansen LE, Nielsen O, Kock K, Ditzel HJ. Restriction of GAGE protein expression to subpopulations of cancer cells is independent of genotype and may limit the use of GAGE proteins as targets for cancer immunotherapy. Br J Cancer. 2006;94(12):1864–73.CrossRefPubMedPubMedCentral
38.
go back to reference Gjerstorff MF, Kock K, Nielsen O, Ditzel HJ. MAGE-A1, GAGE and NY-ESO-1 cancer/testis antigen expression during human gonadal development. Hum Reprod. 2007;22(4):953–60.CrossRefPubMed Gjerstorff MF, Kock K, Nielsen O, Ditzel HJ. MAGE-A1, GAGE and NY-ESO-1 cancer/testis antigen expression during human gonadal development. Hum Reprod. 2007;22(4):953–60.CrossRefPubMed
39.
go back to reference Cheung IY, Chi SN, Cheung NK. Prognostic significance of GAGE detection in bone marrows on survival of patients with metastatic neuroblastoma. Med Pediatr Oncol. 2000;35(6):632–4.CrossRefPubMed Cheung IY, Chi SN, Cheung NK. Prognostic significance of GAGE detection in bone marrows on survival of patients with metastatic neuroblastoma. Med Pediatr Oncol. 2000;35(6):632–4.CrossRefPubMed
40.
go back to reference Kong U, Koo J, Choi K, Park J, Chang H. The expression of GAGE gene can predict aggressive biologic behavior of intestinal type of stomach cancer. Hepato-Gastroenterology. 2004;51(59):1519–23.PubMed Kong U, Koo J, Choi K, Park J, Chang H. The expression of GAGE gene can predict aggressive biologic behavior of intestinal type of stomach cancer. Hepato-Gastroenterology. 2004;51(59):1519–23.PubMed
41.
go back to reference Zambon A, Mandruzzato S, Parenti A, Macino B, Dalerba P, Ruol A, et al. MAGE, BAGE, and GAGE gene expression in patients with esophageal squamous cell carcinoma and adenocarcinoma of the gastric cardia. Cancer. 2001;91(10):1882–8. Zambon A, Mandruzzato S, Parenti A, Macino B, Dalerba P, Ruol A, et al. MAGE, BAGE, and GAGE gene expression in patients with esophageal squamous cell carcinoma and adenocarcinoma of the gastric cardia. Cancer. 2001;91(10):1882–8.
42.
go back to reference Whitehurst AW. Cause and consequence of cancer/testis antigen activation in cancer. Ann Rev Pharmacol Toxicol. 2014;54:251–72.CrossRef Whitehurst AW. Cause and consequence of cancer/testis antigen activation in cancer. Ann Rev Pharmacol Toxicol. 2014;54:251–72.CrossRef
43.
go back to reference Balafoutas D, Hausen A, Mayer S, Hirschfeld M, Jaeger M, Denschlag D, et al. Cancer testis antigens and NY-BR-1 expression in primary breast cancer: prognostic and therapeutic implications. BMC Cancer. 2013;13:271. Balafoutas D, Hausen A, Mayer S, Hirschfeld M, Jaeger M, Denschlag D, et al. Cancer testis antigens and NY-BR-1 expression in primary breast cancer: prognostic and therapeutic implications. BMC Cancer. 2013;13:271.
44.
go back to reference Jin R, Bay BH, Chow VTK, Tan PH, Lin VC. Metallothionein 1E mRNA is highly expressed in oestrogen receptor-negative human invasive ductal breast cancer. Br J Cancer. 2000;83(3):319–23.CrossRefPubMedPubMedCentral Jin R, Bay BH, Chow VTK, Tan PH, Lin VC. Metallothionein 1E mRNA is highly expressed in oestrogen receptor-negative human invasive ductal breast cancer. Br J Cancer. 2000;83(3):319–23.CrossRefPubMedPubMedCentral
45.
go back to reference Schmid KW, Ellis IO, Gee JMW, Darke BM, Lees WE, Kay J, et al. Presence and possible significance of immunocytochemically demonstratable metallothionein over-expression in primary invasive ductal carcinoma of the breast. Virchows Arch A Pathol Anat Histopathol. 1993;422(2):153–9. Schmid KW, Ellis IO, Gee JMW, Darke BM, Lees WE, Kay J, et al. Presence and possible significance of immunocytochemically demonstratable metallothionein over-expression in primary invasive ductal carcinoma of the breast. Virchows Arch A Pathol Anat Histopathol. 1993;422(2):153–9.
46.
go back to reference Fresno M, Wu W, Rodriguez JM, Nadji M. Localization of metallothionein in breast carcinomas. An immunohistochemical study. Virchows Arch A Pathol Anat Histopathol. 1993;423(3):215–9.CrossRefPubMed Fresno M, Wu W, Rodriguez JM, Nadji M. Localization of metallothionein in breast carcinomas. An immunohistochemical study. Virchows Arch A Pathol Anat Histopathol. 1993;423(3):215–9.CrossRefPubMed
47.
go back to reference Bier B, Douglas-Jones A, Totsch M, Dockhorn-Dworniczak B, Bocker W, Janani B, et al. Immunohistochemical demonstration of metallothionein in normal human breast tissue and benign and malignant lesions. Breast Cancer Res Treat. 1994;30(3):213–21. Bier B, Douglas-Jones A, Totsch M, Dockhorn-Dworniczak B, Bocker W, Janani B, et al. Immunohistochemical demonstration of metallothionein in normal human breast tissue and benign and malignant lesions. Breast Cancer Res Treat. 1994;30(3):213–21.
48.
go back to reference Haerslev T, Jacobsen K, Nedergaard L, Zedeler K. Immunohistochemical detection of metallothionein in primary breast carcinomas and their axillary lymph node metastases. Path Res Pract. 1994;190(7):675–81.CrossRefPubMed Haerslev T, Jacobsen K, Nedergaard L, Zedeler K. Immunohistochemical detection of metallothionein in primary breast carcinomas and their axillary lymph node metastases. Path Res Pract. 1994;190(7):675–81.CrossRefPubMed
49.
go back to reference Douglas-Jones AG, Schmid KW, Bier B, Horgan K, Lyons K, Dallimore ND, et al. Metallothionein expression in duct carcinoma in situ of the breast. Human Pathol. 1995;26(2):217–22. Douglas-Jones AG, Schmid KW, Bier B, Horgan K, Lyons K, Dallimore ND, et al. Metallothionein expression in duct carcinoma in situ of the breast. Human Pathol. 1995;26(2):217–22.
50.
go back to reference Goulding H, Jasani B, Pereira H, Reid A, Galea M, Bell JA, et al. Metallothionein expression in human breast cancer. Br J Cancer. 1995;72(4):968–72. Goulding H, Jasani B, Pereira H, Reid A, Galea M, Bell JA, et al. Metallothionein expression in human breast cancer. Br J Cancer. 1995;72(4):968–72.
51.
go back to reference Oyama T, Takei H, Hikino T, Iino Y, Nakajima T. Immunohistochemical expression of metallothionein in invasive breast cancer in relation to proliferative activity, histology and prognosis. Oncology. 1996;53(2):112–7.CrossRefPubMed Oyama T, Takei H, Hikino T, Iino Y, Nakajima T. Immunohistochemical expression of metallothionein in invasive breast cancer in relation to proliferative activity, histology and prognosis. Oncology. 1996;53(2):112–7.CrossRefPubMed
52.
go back to reference Surowiak P, Malkowski R, Materna V, Gyorffy B, Wojnar A, Pudelko M, et al. Elevated metallothionein (MT) expression in invasive ductal breast cancer predicts tamoxifen resistance. Histol Histopathol. 2006;20(4):1037–44. Surowiak P, Malkowski R, Materna V, Gyorffy B, Wojnar A, Pudelko M, et al. Elevated metallothionein (MT) expression in invasive ductal breast cancer predicts tamoxifen resistance. Histol Histopathol. 2006;20(4):1037–44.
53.
go back to reference Gurel V, Sens DA, Somji S, Garrett SH, Nath J, Sens MA. Stable transfection and overexpression of metallothionein isoform 3 inhibits the growth of MCF-7 and Hs578T cells but not that of T-47D or MDA-MB-231 cells. Breast Cancer Res Treat. 2003;80(2):181–91.CrossRefPubMed Gurel V, Sens DA, Somji S, Garrett SH, Nath J, Sens MA. Stable transfection and overexpression of metallothionein isoform 3 inhibits the growth of MCF-7 and Hs578T cells but not that of T-47D or MDA-MB-231 cells. Breast Cancer Res Treat. 2003;80(2):181–91.CrossRefPubMed
54.
go back to reference Tahara E Jr, Tahara H, Kanno M, Naka K, Takeda Y, Matsuzaki T, et al. G1P3, an interferon inducible gene 6-16, is expressed in gastric cancers and inhibits mitochondrial-mediated apoptosis in gastric cancer cell line TMK-1 cell. Cancer Immunol Immunother. 2005;54(8):729–40. Tahara E Jr, Tahara H, Kanno M, Naka K, Takeda Y, Matsuzaki T, et al. G1P3, an interferon inducible gene 6-16, is expressed in gastric cancers and inhibits mitochondrial-mediated apoptosis in gastric cancer cell line TMK-1 cell. Cancer Immunol Immunother. 2005;54(8):729–40.
55.
go back to reference Cheriyath V, Kuhns MA, Jacobs BS, Evangelista P, Elson P, Downs-Kelly E, et al. G1P3, an interferon- and estrogen-induced survival protein contributes to hyperplasia, tamoxifen resistance and poor outcomes in breast cancer. Oncogene. 2012;31(17):2222–36. Cheriyath V, Kuhns MA, Jacobs BS, Evangelista P, Elson P, Downs-Kelly E, et al. G1P3, an interferon- and estrogen-induced survival protein contributes to hyperplasia, tamoxifen resistance and poor outcomes in breast cancer. Oncogene. 2012;31(17):2222–36.
Metadata
Title
The unique C- and N-terminal sequences of Metallothionein isoform 3 mediate growth inhibition and Vectorial active transport in MCF-7 cells
Authors
Brent Voels
Liping Wang
Donald A. Sens
Scott H. Garrett
Ke Zhang
Seema Somji
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2017
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-017-3355-9

Other articles of this Issue 1/2017

BMC Cancer 1/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine