Skip to main content

Inducers of Dome Formation in Epithelial Cell Cultures including Agents That Cause Differentiation

  • Chapter
Tissue Culture of Epithelial Cells

Abstract

Epithelia are cell sheets that line body cavities such as the lumina of the intestine, kidney tubules, and salivary glands. The differentiated phenotype of epithelia involves structural and functional specializations of the plasma membrane which enable these cells to transport ions and fluids across the cell layer. The plasma membrane of this cell type is polarized into distinct apical and basolateral regions which differ functionally, morphologically, and biochemically. Occluding junctions form between adjacent cells at the apical/basolateral boundary and can regulate the passage of ions across the cell layer. In addition, occluding junctions have been proposed to maintain cell polarity by serving as a barrier to lateral diffusion within the membrane of intrinsic proteins from basolateral and apical domains. The Na+/K+ ATPase of epithelia is restricted to the basolateral surface. Na+ pump polarity is believed to create the driving force for vectorial transport of Na+ across the cell layer, setting up an osmotic gradient which drives an accompanying net water flux in the basolateral direction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abaza, N. A., Leighton, J., and Schultz, S. G., 1974, Effects of ouabain on the function and structure of a cell line (MDCK) derived from canine kidney. I. Light microscopic observations of monolayer growth, In Vitro 10:172–183.

    Article  CAS  Google Scholar 

  • Amsler, K., and Cook, J. S., 1982, Development of Na+-dependent hexose transport in a cultured line of procine kidney cells, Am. J. Physiol. 242:C94–C101.

    PubMed  CAS  Google Scholar 

  • Beck, J. C., and Sacktor, B., 1978, The sodium electrochemical potential-mediated uphill transport of D-glucose in renal brush border membrane vesicles, J. Biol. Chem. 253:5531–5535.

    PubMed  CAS  Google Scholar 

  • Bernstein, A., Hunt, D. M., Crichley, V., and Mak, T. W., 1976, Induction by ouabain of hemoglobin synthesis in cultured Friend erythroleukemic cells, Cell 9:375.

    Article  PubMed  CAS  Google Scholar 

  • Bissell, M. J., 1981, The differentiated state of normal and malignant cells or how to define a normal cell in culture, Int. Rev. Cytol. 70:27–100.

    Article  PubMed  CAS  Google Scholar 

  • Boffa, L. C., Vidali, G., Manor, R. S., and Allfrey, V. G., 1978, Suppression of histone deacetylation in vivo and in vitro by sodium butyrate, J. Biol. Chem. 253:3364–3366.

    PubMed  CAS  Google Scholar 

  • Cereijido, M., Rotunno, C. A., Robbins, E. S., and Sabatini, D. D., 1978, Polarized epithelial membranes produced in vitro, in: Membrane Transport Processes (J. F. Hoffman, ed.), Raven Press, New York, p. 433.

    Google Scholar 

  • Cereijido, M., Stefani, E., and Palomo, A. M., 1980, Occluding junctions in a cultured transporting epithelium: Structural and functional heterogeneity, J. Membr. Biol. 53:19–32.

    Article  PubMed  CAS  Google Scholar 

  • Cereijido, M., Meza, I., and Martinez-Palomo, A., 1981a, Occluding junctions in cultured epithelial monolayers, Am. J. Physiol. 240:C96–C102.

    PubMed  CAS  Google Scholar 

  • Cereijido, M., Ehrenfeld, J., Fernandez-Castelo, S., and Meza I., 1981b, Fluxes, junctions and blisters in cultured monolayers of epitheliod cells (MDCK), Ann. N.Y. Acad. Sci. 372:422–441.

    Article  PubMed  CAS  Google Scholar 

  • Chambard, M., Gabrion, J., and Mauchamp, J., 1981, Influence of collagen gel on the orientation of epithelial cell polarity: Follicle formation from isolated thyroid cells and from preformed monolayers, J. Cell Biol. 91:157–166.

    Article  PubMed  CAS  Google Scholar 

  • Claud, P., 1978, Morphological factors influencing transepithelial permeability: A model for the resistance of the zonula occludentes, J. Membrane Biol. 39:219–232.

    Article  Google Scholar 

  • Claude, P., and Goodenough, D. A., 1973, Fracture faces of zonulae occludentes from “tight” and “leaky” epithelia, J. Cell Biol. 58:390.

    Article  PubMed  CAS  Google Scholar 

  • Das, N. K., Hosick, H. L., and Nandi, S., 1974, Influence of seeding density on multicellular organization and nuclear events in cultures of normal and neoplastic mouse mammary epithelium, J. Natl. Cancer Inst. 52:849–855.

    PubMed  CAS  Google Scholar 

  • Dragsten, P. R., Blumenthal, R., and Handler, J. S., 1981, Membrane asymmetry in epithelia: Is the tight junction a barrier to diffusion in the plasma membrane? Nature 294:718–722.

    Article  PubMed  CAS  Google Scholar 

  • Dulbecco, R., Bologna, M., and Unger, M., 1980, Control of differentiation of a mammary cell line by lipids, Proc. Natl Acad. Sci. USA 77:1551–1555.

    Article  PubMed  CAS  Google Scholar 

  • Emerman, J. T., Enami, J., Pitelka, D. R., and Nandi, S., 1977, Hormonal effects on intracellular and secreted casein in cultures of mouse mammary epithelial cells on floating collagen membranes, Proc. Natl. Acad. Sci. USA 74:4466–4470.

    Article  PubMed  CAS  Google Scholar 

  • Emerman, J. T., Burwen, S. J., and Pitelka, D. R., 1979, Substrate properties influencing ultrastructural differentiation of mammary epithelial cells in culture, Tissue Cell. 11:109–119.

    Article  PubMed  CAS  Google Scholar 

  • Greenberg, G., and Hay, E. D., 1982, Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells, J. Cell Biol. 95:333–339.

    Article  Google Scholar 

  • Herskovits, T. T., Behrens, C. F., Suita, P. B., and Pandolfelli, E. R., 1977, Solvent denaturation of globular proteins. Unfolding by the monoalkyl and dialkyl-substituted formamides and ureas, Biochim. Biophys. Acta 490:192–199.

    PubMed  CAS  Google Scholar 

  • Herzinger, D. A., Easton, T. G., and Ojakian, G. K., 1982, The MDCK cell line expresses a cell surface antigen of the kidney distal tubule, J. Cell Biol. 93:269–277.

    Article  Google Scholar 

  • Hull, R. N., Cherry, W. R., and Weaver, G. W., 1976, The origin and characteristics of a pig kidney cell strain LLC—PK1 In Vitro 12:670–677.

    Article  PubMed  CAS  Google Scholar 

  • Kennedy, B. G. and Lever, J. E., 1984, Regulation of Na+, K+, ATPase activity in MDCK kidney epithelial cell cultures: Role of growth state, cyclic AMP and chemical inducers of dome formation and differentiation, J. Cell Physiol., in press.

    Google Scholar 

  • Korn, E. D., 1976, Introductory workshop: Membranes and their association with contractile proteins, in: Cell Motility, Volume 3, Cold Spring Harbor Conferences on Cell Proliferation (R. Goldman, T. Pollard, and J. Rosenbaum, eds.), Cold Spring Harbor Press, New York, pp. 623–629.

    Google Scholar 

  • Lamb, J. F., Ogden, P., and Simmons, N. L., 1981, Autoradiographic localization of [3H]ouabain bound to cultured epithelial cell monolayers of MDCK cells, Biochim. Biophys. Acta 644:333–340.

    Article  PubMed  CAS  Google Scholar 

  • Leder, A., and Leder, P., 1975, Butyric acid, a potent inducer of erythroid differentiation in cultured erythroleukemic cells, Cell 5:319–322.

    Article  PubMed  CAS  Google Scholar 

  • Lee, L. S., and Weinstein, I. B., 1978, Tumor-promoting phorbol esters inhibit binding of epidermal growth factor to cellular receptors, Science 202:313–315.

    Article  PubMed  CAS  Google Scholar 

  • Leighton, J., Brada, Z., Estes, L. W., and Justh, G., Secretory activity and oncogenicity of a cell line (MDCK) derived from canine kidney, Science 163:472–473.

    Google Scholar 

  • Levenson, R., Housman, D., and Cantley, L., 1980, Amiloride inhibits murine erythroleukemia cell differentiation: Evidence for a Ca2+ requirement for commitment, Proc. Natl. Acad. Sci. USA 77:5948–5952.

    Article  PubMed  CAS  Google Scholar 

  • Lever, J. E., 1979a, Inducers of mammalian cell differentiation stimulate dome formation in a differentiated kidney epithelial cell line (MDCK), Proc. Natl. Acad. Sci. USA 76:1323–1327.

    Article  PubMed  CAS  Google Scholar 

  • Lever, J. E., 1979b, Cyclic AMP and inducers of mammalian cell differentiation stimulate dome formation in mammary and renal epithelial cell cultures, in: Hormones and Cell Culture, Volume 6 (G. Sato and R. Ross, eds.), Cold Spring Harbor Conferences on Cell Proliferation, Cold Spring Harbor Press, New York, p. 727.

    Google Scholar 

  • Lever, J. E., 1979c, Regulation of dome formation in differentiated epithelial cell cultures, J. Supramol. Struct. 12:259–272.

    Article  PubMed  CAS  Google Scholar 

  • Lever, J. E., 1981, Regulation of dome formation in kidney epithelial cell cultures, Ann. N.Y. Acad. Sci. 372:371–383.

    Article  PubMed  CAS  Google Scholar 

  • Lever, J. E., 1982a, Cell differentiation and dome formation in polarized epithelial cell monolayers, in: Cell Growth in Hormonally Defined Media, Volume 9 (G. Sato, A. B. Pardee, and D. Sirbasku, eds.), Cold Spring Harbor Conferences on Cell Proliferation, Cold Spring Harbor Press, New York, p. 541.

    Google Scholar 

  • Lever, J. E., 1982b, Expression of a differentiated transport function in apical membrane vesicles isolated from an established kidney epithelial cell line: Sodium electrochemical potential-mediated active sugar transport, J. Biol. Chem. 257:8680–8686.

    PubMed  CAS  Google Scholar 

  • Lever, J. E., 1982c, Transepithelial ion transport and differentiation in epithelial cell cultures, in: Ions, Cell Proliferation and Cancer (A. L. Boynton, W. L. McKeehan, and J. F. Whitfield, eds.), Academic Press, New York, pp. 187–203.

    Google Scholar 

  • Lever, J. E., and Sari, C. E., 1983, Effect of tunicamycin on polarized membrane functions of an established kidney epithelial cell line, Biochim. Biophys. Acta, 762:265–271.

    Article  PubMed  CAS  Google Scholar 

  • Lyman, G. H., Preisler, H. D., and Papahadjopoulos, D., 1976, Membrane action of DMSO and other chemical inducers of Friend leukaemic cell differentiation, Nature 262:360–363.

    Article  CAS  Google Scholar 

  • Mager, D., and Bernstein, A., 1978, Early transport changes during erythroid differentiation of Friend leukemic cells, J. Cell Physiol. 94:275–286.

    Article  PubMed  CAS  Google Scholar 

  • Marks, P. A., and Rifkind, R. A., 1978, Erythroleukemic differentiation, Ann. Rev. Biochem. 47:419–448.

    Article  PubMed  CAS  Google Scholar 

  • Means, A. R., and Dedman, J. R., 1980, Calmodulin—an intracellular calcium receptor, Nature 285:73–77.

    Article  PubMed  CAS  Google Scholar 

  • Meiss, H. K., Green, R. F., and Rodriguez-Boulan, E. J., 1982, Lectin-resistant mutants of polarized epithelial cells, Mol. Cell. Biol. 2:1287–1294.

    PubMed  CAS  Google Scholar 

  • Meza, I., Ibarra, G., Sabanero, M., Martinez—Palomo, A., and Cereijido, M., 1980, Occluding junctions and cytoskeletal components in a cultured transporting epithelium, J. Cell Biol. 87:746–754.

    Article  PubMed  CAS  Google Scholar 

  • Mills, J. W., MacKnight, A. D. C., Dayer, J. M., and Ausiello, D. A. 1979, Localization of 3H-ouabain-sensitive Na+ pump sites in cultured pig kidney cells, Am. J. Physiol. 236:C157–C162.

    PubMed  CAS  Google Scholar 

  • Misfeldt, D. S., Hamamoto, S. T., and Pitelka, D. R., 1976, Transepithelial transport in cell culture, Proc. Natl. Acad. Sci. USA 73:1212–1216.

    Article  PubMed  CAS  Google Scholar 

  • Mullin, J. M., Diamond, L., and Kleinzeller, A., 1980a, Effects of ouabain and ortho-vanadate on transport-related properties of the LLC—PK1 renal epithelial cell line, J. Cell. Physiol. 105:1–6.

    Article  PubMed  CAS  Google Scholar 

  • Mullin, J. M., Weibel, J., Diamond, L., and Kleinzeller, A. J., 1980b, Sugar transport in the LLC—PK1 renal epithelial cell line: Similarity to mammalian kidney and the influence of cell density, J. Cell. Physiol. 104:375–389.

    Article  PubMed  CAS  Google Scholar 

  • Ojakian, G. K., 1981, Tumor promoter-induced changes in the permeability of epithelial cell tight junctions, Cell 23:95–103.

    Article  PubMed  CAS  Google Scholar 

  • Pickett, P. B., Pitelka, D. R., Hamamoto, S. T., and Misfeldt, D. S., 1975, Occluding junctions and cell behavior in primary cultures of normal and neoplastic mammary gland cells, J. Cell Biol. 66:316–332.

    Article  PubMed  CAS  Google Scholar 

  • Rabito, C. A., 1981, Localization of the Na+-sugar cotransport system in a kidney epithelial cell line (LLC PK1), Biochim. Biophys. Acta 649:286–290.

    Article  PubMed  CAS  Google Scholar 

  • Rabito, C. A., and Karish, M. V., 1982, Polarized amino acid transport by an epithelial cell line of renal origin (LLC—PK1): The basolateral systems, J. Biol. Chem. 257:6802–6808.

    PubMed  CAS  Google Scholar 

  • Rabito, C. A., Tchao, R., Valentich, J., and Leighton, J., 1978, Distribution and characteristics of the occluding junctions in a monolayer of a cell line (MDCK) derived from canine kidney, J. Membr. Biol. 43:351–365.

    Article  PubMed  CAS  Google Scholar 

  • Rabito, C. A., Tchao, R., Valentich, J., and Leighton, J., 1980, Effect of cell-substratum interaction on hemicyst formation by MDCK cells, In Vitro 16:461.

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen, H., Goodman, D. B. P., and Tenenhouse, A., 1972, The role of cyclic AMP and calcium in cell activation, CRC Crit. Rev. Biochem. 1:95–148.

    Article  PubMed  CAS  Google Scholar 

  • Reid, L., Morrow, B., Jubinsky, P., Schwartz, E., and Gatmaitan, Z., 1981, Regulation of growth and differentiation of epithelial cells by hormones, growth factors, and substrates of extracellular matrix, Ann. N.Y. Acad. Sci. 372:354–370.

    Article  PubMed  CAS  Google Scholar 

  • Reuben, R. C., Khanna, P. L., Gazitt, Y., Breslow, R., Rifkind, R., and Marks, P. A., 1978, Inducers of erythroleukemic differentiation. Relationship of structure to activity among planarpolar compounds, J. Biol. Chem. 253:4214–4218.

    PubMed  CAS  Google Scholar 

  • Rifkind, R. A., Fibach, E., Reuben, R. C., Gazitt, Y., Yamasaki, H., Weinstein, I. B., Nudel, V., Shumida, I., Terada, M., and Marks, P. A., 1978, Erythroleukemia cells: Commitment to differentiate and the role of the cell surface, in: Differentiation of Normal and Neoplastic Hematopoietic Cells, Volume 5 (B. Clarkson, P. A. Marks, and J. E. Till, eds.), Cold Spring Harbor Conferences on Cell Proliferation, Cold Spring Harbor Press, New York, p. 209.

    Google Scholar 

  • Rodriguez-Boulan, E., and Sabatini, D. D., 1978, Asymmetric budding of viruses in epithelial monolayers: A model system for study of epithelial polarity, Proc. Natl. Acad. Sci. USA 75:5071–5075.

    Article  PubMed  CAS  Google Scholar 

  • Roth, M. G., Fitzpatrick, J. P., and Compans, R. W., 1979, Polarity of influenza and vesicular stomatitis virus maturation in MDCK cells: Lack of a requirement for glycosylation of viral glycoproteins, Proc. Natl. Acad. Sci. USA 75:6430–6434.

    Article  Google Scholar 

  • Sanders, E. J., and Dickau, J. E., 1981, Morphological differentiation of an embryonic epithelium in culture, Cell Tissue Res. 220:539–548.

    Article  PubMed  CAS  Google Scholar 

  • Sanders, M. J., and Misfeldt, D. S., 1981, Transepithelial transport in cell culture: Different stoichiometries of Na+: phlorizin binding and Na+:D-glucose cotransport, J. Cell Biol. 91:424 (abstract).

    Article  Google Scholar 

  • Scher, W., Tsuei, D., Sassa, S., Price, P., Gabelman, N., and Friend, C., 1978, Inhibition of dimethylsulfoxide Friend cell erythrodifferentiation by hydrocortisone and other steroids, Proc. Natl. Acad. Sci. USA 75:3851–3855.

    Article  PubMed  CAS  Google Scholar 

  • Sheffery, M., Rifkind, R. A., and Marks, P. A., 1982, Murine erythroleukemia cell differentiation: DNAse I hypersensitivity and DNA methylation near the globin genes, Proc. Natl. Acad. Sci. USA 79:1180–1184.

    Article  PubMed  CAS  Google Scholar 

  • Simmons, J. L., Fishman, P. H., Freese, E., and Brady, R. O., 1975, Morphological alterations and ganglioside sialytransferase activity induced by small fatty acids in HeLa cells, J. Cell Biol. 66:414–424.

    Article  PubMed  CAS  Google Scholar 

  • Sirica, A. E., Richards, W., Tsukada, Y., Sattler, C. A., and Pitot, H. C., 1979, Fetal phenotypic expression by adult rat hepatocytes on collagen gel/nylon meshes, Proc. Natl. Acad. Sci. USA 76:283–287.

    Article  PubMed  CAS  Google Scholar 

  • Smith, R. L., Macara, I. G., Levenson, R., Housman, D., and Cantley, L., 1982, Evidence that a Na+ /Ca2+ antiport system regulates murine erythroleukemia cell differentiation, J. Biol. Chem. 257:773–780.

    PubMed  CAS  Google Scholar 

  • Storrie, B., Puck, T. T., and Wigner, L., 1978, The role of butyrate in the reverse transformation reaction in mammalian cells, J. Cell Physiol. 94:69–76.

    Article  PubMed  CAS  Google Scholar 

  • Sweadner, K. J., and Goldin, S. M., 1980, Active transport of sodium and potassium ions, New Engl. J. Med. 302:777–783.

    Article  PubMed  CAS  Google Scholar 

  • Taub, M., and Saier, M. H., 1979, Regulation of 22Na transport by calcium in an established kidney epithelial cell line, J. Biol. Chem. 254:11440–11444.

    PubMed  CAS  Google Scholar 

  • Taub, M., Chuman, L., Saier, M. H., and Sato, G., 1979, Growth of Madin-Darby canine kidney epithelial cell (MDCK) line in hormone-supplemented, serum-free medium, Proc. Natl. Acad. Sci. USA 76:3338–3342.

    Article  PubMed  CAS  Google Scholar 

  • Terada, M., Epner, E., Nudel, U., Salmon, J., Fibach, E., Rifkind, R. A., and Marks, P. A., 1978, Induction of murine erythroleukemia differentiation by actinomycin D, Proc. Natl. Acad. Sci. USA 75:2795–2799.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, S. R., Schultz, S. G., and Lever, J. E., 1982, Stimulation of dome formation in MDCK kidney epithelial cell cultures by inducers of differentiation: Dissociation from effects on transepithelial resistance and cyclic AMP levels, J. Cell Physiol. 113:427–432.

    Article  PubMed  CAS  Google Scholar 

  • U, H. S., Saier, M. H., Jr., and Ellisman, M. H., 1979, Tight junction formation is closely linked to the polar redistribution of intramembranous particles in aggregating MDCK epithelia, Exp. Cell Res. 122:384–392.

    Article  PubMed  Google Scholar 

  • U, H. S., Saier, M. H., Jr., and Ellisman, M.H., 1980, Tight junction formation in the establishment of intramembranous particle polarity in aggregating MDCK cells, Exp. Cell Res. 128: 223–237.

    Article  PubMed  Google Scholar 

  • Valentich, J. D., 1981, Morphological similarities between the dog kidney cell line MDCK and the mammalian cortical collecting tubule, Ann. N.Y. Acad. Sci. 372:384–404.

    Article  PubMed  CAS  Google Scholar 

  • Valentich, J. D., 1982, Basal lamina assembly by the dog kidney epithelial cell line MDCK, in: Growth of Cells in Hormonally-Defined Media, Volume 9 (G. Sato, A. B. Pardee, and D. Sirbasku, eds.), Cold Spring Harbor Press, New York, pp. 567–579.

    Google Scholar 

  • Valentich, J. D., Tchao, R., and Leighton, J., 1979, Hemicyst formation stimulated by cyclic AMP in dog kidney cell line MDCK, J. Cell. Physiol. 100:291–304.

    Article  PubMed  CAS  Google Scholar 

  • Weinstein, I. B., Wigler, M., and Pietropaolo, C., 1977, The action of tumor promoting agents in cell culture, in: Origins of Human Cancer (H. H. Heath, J. D. Watson, and J. A. Wingston, eds.), Cold Spring Harbor Press, New York, pp. 751–772.

    Google Scholar 

  • Wicha, M. S., Lowrie, G., Kohn, E., Bagavardoss, P., and Mahn, T., 1982, Extracellular matrix promotes mammary epithelial growth and differentiation in vitro, Proc. Natl. Acad. Sci. USA 79:3213–3217.

    Article  PubMed  CAS  Google Scholar 

  • Yang, J., Richards, J., Bowman, P., Guzman, R., Enami, J., McCormick, K. Hamamoto, S., Pitelka, D., and Nandi, S., 1979, Sustained growth and three-dimensional organization of primary mammary tumor epithelial cells embedded in collagen gels, Proc. Natl. Acad. Sci. USA 76:3401–3405.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Lever, J.E. (1985). Inducers of Dome Formation in Epithelial Cell Cultures including Agents That Cause Differentiation. In: Taub, M. (eds) Tissue Culture of Epithelial Cells. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4814-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4814-6_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4816-0

  • Online ISBN: 978-1-4684-4814-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics