Skip to main content
Top
Published in: BMC Cancer 1/2017

Open Access 01-12-2017 | Research article

Notch ligand Delta-like 1 as a novel molecular target in childhood neuroblastoma

Authors: P. Bettinsoli, G. Ferrari-Toninelli, S. A. Bonini, C. Prandelli, M. Memo

Published in: BMC Cancer | Issue 1/2017

Login to get access

Abstract

Background

Neuroblastoma is the most common extracranial solid malignancy in childhood, responsible for 15% of all pediatric cancer deaths. It is an heterogeneous disease that does not always respond to classical therapy; so the identification of new and specific molecular targets to improve existing therapy is needed. We have previously demonstrated the involvement of the Notch pathway in the onset and progression of neuroblastoma. In this study we further investigated the role of Notch signaling and identified Delta-like 1 (DLL1) as a novel molecular target in neuroblastoma cells with a high degree of MYCN amplification, which is a major oncogenic driver in neuroblastoma. The possibility to act on DLL1 expression levels by using microRNAs (miRNAs) was assessed.

Methods

DLL1 mRNA and protein expression levels were measured in three different neuroblastoma cell lines using quantitative real-time PCR and Western Blot analysis, respectively. Activation of the Notch pathway as a result of increased levels of DLL1 was analyzed by Immunofluorescence and Western Blot methods. In silico tools revealed the possibility to act on DLL1 expression levels with miRNAs, in particular with the miRNA-34 family. Neuroblastoma cells were transfected with miRNA-34 family members, and the effect of miRNAs transfection on DLL1 mRNA expression levels, on cell differentiation, proliferation and apoptosis was measured.

Results

In this study, the DLL1 ligand was identified as the Notch pathway component highly expressed in neuroblastoma cells with MYCN amplification. In silico analysis demonstrated that DLL1 is one of the targets of miRNA-34 family members that maps on chromosome regions that are frequently deregulated or deleted in neuroblastoma. We studied the possibility to use miRNAs to target DLL1. Among all miRNA-34 family members, miRNA-34b is able to significantly downregulate DLL1 mRNA expression levels, to arrest cell proliferation and to induce neuronal differentiation in malignant neuroblastoma cells.

Conclusions

Targeted therapies have emerged as new strategies for cancer treatment. This study identified the Notch ligand DLL1 as a novel and attractive molecular target in childhood neuroblastoma and its results could help to devise a targeted therapy using miRNAs.
Appendix
Available only for authorised users
Literature
3.
go back to reference Wagner LM, Danks MK. New therapeutic targets for the treatment of high-risk Neuroblastoma. J Cell Biochem. 2009;107:46–57.CrossRefPubMed Wagner LM, Danks MK. New therapeutic targets for the treatment of high-risk Neuroblastoma. J Cell Biochem. 2009;107:46–57.CrossRefPubMed
5.
go back to reference Garaventa A, Perilongo G. High risk neuroblastoma: a persistent therapeutic challenge. Pediatr Blood Cancer. 2008;51:722–3.CrossRefPubMed Garaventa A, Perilongo G. High risk neuroblastoma: a persistent therapeutic challenge. Pediatr Blood Cancer. 2008;51:722–3.CrossRefPubMed
6.
go back to reference Shakeel M, Cheung NV. Neuroblastoma: therapeutic strategies for a clinical enigma. Cancer Treat Rev. 2010;36(4):307–17.CrossRef Shakeel M, Cheung NV. Neuroblastoma: therapeutic strategies for a clinical enigma. Cancer Treat Rev. 2010;36(4):307–17.CrossRef
8.
go back to reference Ferrari-Toninelli G, Bonini SA, Uberti D, Buizza L, Bettinsoli P, Poliani PL, et al. Targeting notch pathway induces growth inhibition and differentiation of Neuroblastoma. Neuro-Oncology. 2010;12(12):1231–43.CrossRefPubMedPubMedCentral Ferrari-Toninelli G, Bonini SA, Uberti D, Buizza L, Bettinsoli P, Poliani PL, et al. Targeting notch pathway induces growth inhibition and differentiation of Neuroblastoma. Neuro-Oncology. 2010;12(12):1231–43.CrossRefPubMedPubMedCentral
9.
go back to reference Lathia JD, Mattson MP, Cheng A. Notch: from neural development to neurological disorders. J Neurochem. 2009;107:1471–81.CrossRef Lathia JD, Mattson MP, Cheng A. Notch: from neural development to neurological disorders. J Neurochem. 2009;107:1471–81.CrossRef
10.
go back to reference Wang Z, Li Y, Banerjee S, Sarkar FH. Emerging role of notch in stem cells and cancer. Cancer Lett. 2009;279:8–12.CrossRefPubMed Wang Z, Li Y, Banerjee S, Sarkar FH. Emerging role of notch in stem cells and cancer. Cancer Lett. 2009;279:8–12.CrossRefPubMed
11.
go back to reference Radtke F, Ray K. The Role of Notch in Tumorigenesis: Oncogene or tumour suppressor? Nat Rev Cancer. 2003;3(10):756-67. Radtke F, Ray K. The Role of Notch in Tumorigenesis: Oncogene or tumour suppressor? Nat Rev Cancer. 2003;3(10):756-67.
12.
go back to reference Leong KG, Karsan A. Recent insights into the role of notch signalling in tumorigenesis. Blood. 2006;107(6):2223–33.CrossRefPubMed Leong KG, Karsan A. Recent insights into the role of notch signalling in tumorigenesis. Blood. 2006;107(6):2223–33.CrossRefPubMed
13.
go back to reference Rehman AO, Wang CY. Notch signalling in the regulation of tumor angiogenesis. Trends Cell Bio. 2006;16(6):293–300.CrossRef Rehman AO, Wang CY. Notch signalling in the regulation of tumor angiogenesis. Trends Cell Bio. 2006;16(6):293–300.CrossRef
14.
go back to reference Miele L. Notch signalling. Clin Cancer Res. 2006;12(4):1074-9. Miele L. Notch signalling. Clin Cancer Res. 2006;12(4):1074-9.
15.
go back to reference Bailey JM, Singh PK, Hollingsworth MA. Cancer Metastasis facilited by developmental pathways: sonic hedgehog, notch, and bone morphogenic proteins. J Cell Biochem. 2007;102(4):829–39.CrossRefPubMed Bailey JM, Singh PK, Hollingsworth MA. Cancer Metastasis facilited by developmental pathways: sonic hedgehog, notch, and bone morphogenic proteins. J Cell Biochem. 2007;102(4):829–39.CrossRefPubMed
16.
go back to reference Zhang P, Yang Y, Zweidler-McKay PA, Hughes DP. Critical role of notch signalling in osteosarcoma invasion and metastasis. Clin Cancer Res. 2008;14(10):2962–9.CrossRefPubMedPubMedCentral Zhang P, Yang Y, Zweidler-McKay PA, Hughes DP. Critical role of notch signalling in osteosarcoma invasion and metastasis. Clin Cancer Res. 2008;14(10):2962–9.CrossRefPubMedPubMedCentral
18.
go back to reference Tang XX, Zhao H, Kung B, Kim DY, Hicks SL, Cohn SL, et al. The MYCN enigma: significance of MYCN expression in Neuroblastoma. Cancer Res. 2006;66(5):2826–33.CrossRefPubMed Tang XX, Zhao H, Kung B, Kim DY, Hicks SL, Cohn SL, et al. The MYCN enigma: significance of MYCN expression in Neuroblastoma. Cancer Res. 2006;66(5):2826–33.CrossRefPubMed
20.
go back to reference Pang RT, Leung CO, Lee CL, Lam KK, Ye TM, Chiu PC, et al. MicroRNA-34a is a tumor suppressor in choriocarcinoma via regulation of Delta-like1. BMC Cancer. 2013;13:25.CrossRefPubMedPubMedCentral Pang RT, Leung CO, Lee CL, Lam KK, Ye TM, Chiu PC, et al. MicroRNA-34a is a tumor suppressor in choriocarcinoma via regulation of Delta-like1. BMC Cancer. 2013;13:25.CrossRefPubMedPubMedCentral
21.
go back to reference Yu F, Hao X, Zhao H, Ge C, Yao M, Yang S, Li J. Delta-like 1 contributes to cell growth by increasing the interferon-inducible protein 16 expression in hepatocellular carcinoma. Liver Int. 2010;30(5):703–14.CrossRefPubMed Yu F, Hao X, Zhao H, Ge C, Yao M, Yang S, Li J. Delta-like 1 contributes to cell growth by increasing the interferon-inducible protein 16 expression in hepatocellular carcinoma. Liver Int. 2010;30(5):703–14.CrossRefPubMed
22.
go back to reference Qiu XX, Chen L, Wang CH, Lin ZX, Zhou CF, Liu SY, Wang XF, Chen YP. High delta-like ligand 4 (DLL4) is correlated with peritumoral brain edema and predicts poor prognosis in primary glioblastoma. Medicine. 2014;93(8):e57.CrossRefPubMedPubMedCentral Qiu XX, Chen L, Wang CH, Lin ZX, Zhou CF, Liu SY, Wang XF, Chen YP. High delta-like ligand 4 (DLL4) is correlated with peritumoral brain edema and predicts poor prognosis in primary glioblastoma. Medicine. 2014;93(8):e57.CrossRefPubMedPubMedCentral
23.
go back to reference Oishi H, Sunamura M, Egawa S, Motoi F, Unno M, Furukawa T, Habib NA, Yagita H. Blockade of delta-like ligand 4 signaling inhibits both growth and angiogenesis of pancreatic cancer. Pancreas. 2014;39(6):897–903.CrossRef Oishi H, Sunamura M, Egawa S, Motoi F, Unno M, Furukawa T, Habib NA, Yagita H. Blockade of delta-like ligand 4 signaling inhibits both growth and angiogenesis of pancreatic cancer. Pancreas. 2014;39(6):897–903.CrossRef
24.
go back to reference Jubb AM, Turley H, Moeller HC, Steers G, Han C, Li JL, Leek R, Tan EY, Singh B, Mortensen NJ, Noguera-Troise I, Pezzella F, Gatter KC, Thurston G, Fox SB, Harris AL. Expression of delta-like ligand 4 (DLL4) and markers of hypoxia in colon cancer. Br J Cancer. 2009;101(10):1749–57.CrossRefPubMedPubMedCentral Jubb AM, Turley H, Moeller HC, Steers G, Han C, Li JL, Leek R, Tan EY, Singh B, Mortensen NJ, Noguera-Troise I, Pezzella F, Gatter KC, Thurston G, Fox SB, Harris AL. Expression of delta-like ligand 4 (DLL4) and markers of hypoxia in colon cancer. Br J Cancer. 2009;101(10):1749–57.CrossRefPubMedPubMedCentral
25.
go back to reference Jansson DM, Lund AH. MicroRNA and cancer. Mol Oncol. 2012;6(6):590–610. Zhi F, Wang R, Wang Q, Xue L, Deng D, Wang S, et al. MicroRNAs in neuroblastoma: small-sized players with a large impact. Neurochem Res 2014; 39(4):613–23CrossRefPubMed Jansson DM, Lund AH. MicroRNA and cancer. Mol Oncol. 2012;6(6):590–610. Zhi F, Wang R, Wang Q, Xue L, Deng D, Wang S, et al. MicroRNAs in neuroblastoma: small-sized players with a large impact. Neurochem Res 2014; 39(4):613–23CrossRefPubMed
26.
go back to reference Shalaby T, Fiaschetti G, Baumgartner M, Grotzer MA. Significance and therapeutic value of miRNAs in Embryonal neural tumors. Molecules. 2014;19:5821–62.CrossRefPubMed Shalaby T, Fiaschetti G, Baumgartner M, Grotzer MA. Significance and therapeutic value of miRNAs in Embryonal neural tumors. Molecules. 2014;19:5821–62.CrossRefPubMed
27.
go back to reference Bader AG. MiR-34a- a microRNA replacement therapy is headed to the clinic. Front Genet. 2012;3:120. Bader AG. MiR-34a- a microRNA replacement therapy is headed to the clinic. Front Genet. 2012;3:120.
29.
go back to reference Nana-Sinkam SP, Croce CM. Clinical applications for microRNAs in cancer. Clin Pharmacol Ther. 2012;93(1):98–104.CrossRefPubMed Nana-Sinkam SP, Croce CM. Clinical applications for microRNAs in cancer. Clin Pharmacol Ther. 2012;93(1):98–104.CrossRefPubMed
30.
go back to reference Wiggins JF, Ruffino L, Kelnar K, Omotola M, Patrawala L, Brown D, et al. Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34. Cancer Res. 2010;70(14):5923–30.CrossRefPubMedPubMedCentral Wiggins JF, Ruffino L, Kelnar K, Omotola M, Patrawala L, Brown D, et al. Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34. Cancer Res. 2010;70(14):5923–30.CrossRefPubMedPubMedCentral
31.
go back to reference Lodygin D, Tarasov V, Epanchintsev A, Berking C, Knyazeva T, Körner H, et al. Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle. 2008;7(16):2591–600.CrossRefPubMed Lodygin D, Tarasov V, Epanchintsev A, Berking C, Knyazeva T, Körner H, et al. Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle. 2008;7(16):2591–600.CrossRefPubMed
32.
33.
go back to reference Nalls D, Tang SN, Rodova M, Srivastava RK, Shankar S. Targeting epigenetic regulation of miR-34a for treatment of pancreatic cancer by inhibition of pancreatic cancer stem cells. PLoS One. 2011;6(8):e24099.CrossRefPubMedPubMedCentral Nalls D, Tang SN, Rodova M, Srivastava RK, Shankar S. Targeting epigenetic regulation of miR-34a for treatment of pancreatic cancer by inhibition of pancreatic cancer stem cells. PLoS One. 2011;6(8):e24099.CrossRefPubMedPubMedCentral
34.
go back to reference Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH, et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell. 2007;26(5):745–52.CrossRefPubMedPubMedCentral Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH, et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell. 2007;26(5):745–52.CrossRefPubMedPubMedCentral
35.
go back to reference Welch C, Chen Y, Stallings RL. MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene. 2007;26(34):5017–22.CrossRefPubMed Welch C, Chen Y, Stallings RL. MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene. 2007;26(34):5017–22.CrossRefPubMed
36.
go back to reference Corney DC, Hwang CI, Matoso A, Vogt M, Flesken-Nikitin A, Godwin AK, et al. Frequent downregulation of miR-34 family in human ovarian cancers. Clin Cancer Res. 2010;16(4):1119–28.CrossRefPubMedPubMedCentral Corney DC, Hwang CI, Matoso A, Vogt M, Flesken-Nikitin A, Godwin AK, et al. Frequent downregulation of miR-34 family in human ovarian cancers. Clin Cancer Res. 2010;16(4):1119–28.CrossRefPubMedPubMedCentral
37.
go back to reference Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H, et al. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med. 2011;17(2):211–5.CrossRefPubMedPubMedCentral Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H, et al. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med. 2011;17(2):211–5.CrossRefPubMedPubMedCentral
38.
go back to reference Craig VJ, Cogliatti SB, Imig J, Renner C, Neuenschwander S, Rehrauer H, et al. Myc-mediated repression of microRNA-34a promotes high-grade transformation of B-cell lymphoma by dysregulation of FoxP1. Blood. 2011;117(23):6227–36.CrossRefPubMedPubMedCentral Craig VJ, Cogliatti SB, Imig J, Renner C, Neuenschwander S, Rehrauer H, et al. Myc-mediated repression of microRNA-34a promotes high-grade transformation of B-cell lymphoma by dysregulation of FoxP1. Blood. 2011;117(23):6227–36.CrossRefPubMedPubMedCentral
39.
go back to reference De Antonellis P, Medaglia C, Cusanelli E, Andolfo L, Liguori L, De Vita G, et al. MiR-34a targeting of notch ligand delta-like 1 impairs CD15+/CD133+ tumor-propagating cells and supports neural differentiation in medulloblastoma. PLoS One. 2011;6(9):e24584.CrossRefPubMedPubMedCentral De Antonellis P, Medaglia C, Cusanelli E, Andolfo L, Liguori L, De Vita G, et al. MiR-34a targeting of notch ligand delta-like 1 impairs CD15+/CD133+ tumor-propagating cells and supports neural differentiation in medulloblastoma. PLoS One. 2011;6(9):e24584.CrossRefPubMedPubMedCentral
40.
go back to reference Li WB, Ma MW, Dong LJ, Wang F, Chen LX, Li XR. MicroRNA-34a targets notch1 and inhibits cell proliferation in glioblastoma multiforme. Cancer Biol Ther. 2011;12(6):477–83.CrossRefPubMed Li WB, Ma MW, Dong LJ, Wang F, Chen LX, Li XR. MicroRNA-34a targets notch1 and inhibits cell proliferation in glioblastoma multiforme. Cancer Biol Ther. 2011;12(6):477–83.CrossRefPubMed
41.
go back to reference Majid S, Dar AA, Saini S, Shahryari V, Arora S, Zaman MS, Chan I, Yamamura S, Tanaka Y, Chiyomaru T, Deng G, Dahiya R. MiRNA-34b inhibits prostate cancer through demethylation, active chromatin modifications, and AKT pathways. Clin Cancer Res. 2013;19(1):73–84.CrossRefPubMed Majid S, Dar AA, Saini S, Shahryari V, Arora S, Zaman MS, Chan I, Yamamura S, Tanaka Y, Chiyomaru T, Deng G, Dahiya R. MiRNA-34b inhibits prostate cancer through demethylation, active chromatin modifications, and AKT pathways. Clin Cancer Res. 2013;19(1):73–84.CrossRefPubMed
42.
go back to reference Lee YM, Lee JY, Ho CC, Hong QS, Yu SL, Tzeng CR, Yang PC, Chen HW. MiRNA-34b as a tumor suppressor in estrogen-dependent growth of breast cancer cells. Breast Cancer Res. 2011;13(6):R116.CrossRefPubMedPubMedCentral Lee YM, Lee JY, Ho CC, Hong QS, Yu SL, Tzeng CR, Yang PC, Chen HW. MiRNA-34b as a tumor suppressor in estrogen-dependent growth of breast cancer cells. Breast Cancer Res. 2011;13(6):R116.CrossRefPubMedPubMedCentral
43.
go back to reference Edsjö A, Nilsson H, Vandesompele J, Karlsson J, Pattyn F, Culp LA, Speleman F, Påhlman S. Neuroblastoma cells with overexpressed MYCN retain their capacity to undergo neuronal differentiation. Lab Investig. 2004;84(4):406–17.CrossRefPubMed Edsjö A, Nilsson H, Vandesompele J, Karlsson J, Pattyn F, Culp LA, Speleman F, Påhlman S. Neuroblastoma cells with overexpressed MYCN retain their capacity to undergo neuronal differentiation. Lab Investig. 2004;84(4):406–17.CrossRefPubMed
44.
go back to reference Rejnolds PC, Matthay K, Villablanca J, Maurer BJ. Retinoid therapy of high-risk neuroblastoma. Cancer Letter. 2003;197(1–2):185–92.CrossRef Rejnolds PC, Matthay K, Villablanca J, Maurer BJ. Retinoid therapy of high-risk neuroblastoma. Cancer Letter. 2003;197(1–2):185–92.CrossRef
45.
go back to reference Osugi J, Kimura Y, Owada Y, Inoue T, Watanabe Y, Yamaura T, Fukuhara M, Muto S, Okabe N, Matsumura Y, Hasegawa T, Yonechi A, Hoshino M, Higuchi M, Shio Y, Suzuki H, Gotoh M. Prognostic impact of Hypoxia-Inducible miRNA-210 in Patients with Lung Adenocarcinoma. J Oncol. 2015;2015:316745. Osugi J, Kimura Y, Owada Y, Inoue T, Watanabe Y, Yamaura T, Fukuhara M, Muto S, Okabe N, Matsumura Y, Hasegawa T, Yonechi A, Hoshino M, Higuchi M, Shio Y, Suzuki H, Gotoh M. Prognostic impact of Hypoxia-Inducible miRNA-210 in Patients with Lung Adenocarcinoma. J Oncol. 2015;2015:316745.
46.
go back to reference Zeng L, Liu J, Wang Y, Wang L, Weng S, Tang Y, Zheng C, Cheng Q, Chen S, Yang GY. MicroRNA-210 as a novel blood biomarker in acute cerebral ischemia. Front Biosci. 2011;3:1265–72. Zeng L, Liu J, Wang Y, Wang L, Weng S, Tang Y, Zheng C, Cheng Q, Chen S, Yang GY. MicroRNA-210 as a novel blood biomarker in acute cerebral ischemia. Front Biosci. 2011;3:1265–72.
47.
go back to reference Cornell R, Eisen JS. Notch in the pathway: the roles of notch signaling in neural crest development. Cell & Developmental Biology. 2005;16:663–72.CrossRef Cornell R, Eisen JS. Notch in the pathway: the roles of notch signaling in neural crest development. Cell & Developmental Biology. 2005;16:663–72.CrossRef
48.
go back to reference Tsarovina K, Schellenberger J, Schneider C, Rohrer H. Progenitor cell maintenance and neurogenesis in sympathetic ganglia involves notch signaling. Moll Cell Neurosci. 2008;37(1):20–31.CrossRef Tsarovina K, Schellenberger J, Schneider C, Rohrer H. Progenitor cell maintenance and neurogenesis in sympathetic ganglia involves notch signaling. Moll Cell Neurosci. 2008;37(1):20–31.CrossRef
49.
go back to reference Buechner J, Einvik C. N-myc and noncoding RNAs in neuroblastoma. Mol Cancer Res. 2012;10(10):1243–53.CrossRefPubMed Buechner J, Einvik C. N-myc and noncoding RNAs in neuroblastoma. Mol Cancer Res. 2012;10(10):1243–53.CrossRefPubMed
50.
go back to reference Pession A, Tonelli R. The MYCN oncogene as a specific and selective drug target for peripheral and central nervous system tumors. Curr Cancer Drug Targets. 2005;5(4):273–83.CrossRefPubMed Pession A, Tonelli R. The MYCN oncogene as a specific and selective drug target for peripheral and central nervous system tumors. Curr Cancer Drug Targets. 2005;5(4):273–83.CrossRefPubMed
51.
go back to reference Zhao X, D’ Arca D, Lim WK, Brahmachary M, Carro MS, Ludwig T, Cardo CC, Guillemot F, Aldape K, Califano A, Iavarone A, Lasorella A. The N-Myc-DLL3 cascade is suppressed by the ubiquitin ligase Huwe1 to inhibit proliferation and promote neurogenesis in the developing brain. Dev Cell. 2009;17(2):210–21.CrossRefPubMedPubMedCentral Zhao X, D’ Arca D, Lim WK, Brahmachary M, Carro MS, Ludwig T, Cardo CC, Guillemot F, Aldape K, Califano A, Iavarone A, Lasorella A. The N-Myc-DLL3 cascade is suppressed by the ubiquitin ligase Huwe1 to inhibit proliferation and promote neurogenesis in the developing brain. Dev Cell. 2009;17(2):210–21.CrossRefPubMedPubMedCentral
52.
go back to reference Hoshino L, Matsubara H. MicroRNAs in cancer diagnosis and therapy: from bench to bedside. Surg Today. 2013;43(5):467–78.CrossRefPubMed Hoshino L, Matsubara H. MicroRNAs in cancer diagnosis and therapy: from bench to bedside. Surg Today. 2013;43(5):467–78.CrossRefPubMed
53.
go back to reference Das S, Bryan K, Buckley PG, Piskareva O, Bray IM, Foley N, et al. Modulation of neuroblastoma disease pathogenesis by an extensive network of epigenetically regulated microRNAs. Oncogene. 2013;32:2927–36.CrossRefPubMed Das S, Bryan K, Buckley PG, Piskareva O, Bray IM, Foley N, et al. Modulation of neuroblastoma disease pathogenesis by an extensive network of epigenetically regulated microRNAs. Oncogene. 2013;32:2927–36.CrossRefPubMed
54.
go back to reference Chen Y, Stallings RL. Differential patterns of MicroRNA expression in Neuroblastoma are correlated with prognosis, differentiation, and apoptosis. Cancer Res. 2007;67(3):976–83.CrossRefPubMed Chen Y, Stallings RL. Differential patterns of MicroRNA expression in Neuroblastoma are correlated with prognosis, differentiation, and apoptosis. Cancer Res. 2007;67(3):976–83.CrossRefPubMed
55.
56.
Metadata
Title
Notch ligand Delta-like 1 as a novel molecular target in childhood neuroblastoma
Authors
P. Bettinsoli
G. Ferrari-Toninelli
S. A. Bonini
C. Prandelli
M. Memo
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2017
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-017-3340-3

Other articles of this Issue 1/2017

BMC Cancer 1/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine