Skip to main content
Top
Published in: BMC Cancer 1/2017

Open Access 01-12-2017 | Research Article

An approach to forecast human cancer by profiling microRNA expressions from NGS data

Authors: A. Salim, R. Amjesh, S. S. Vinod Chandra

Published in: BMC Cancer | Issue 1/2017

Login to get access

Abstract

Background

microRNAs are single-stranded non-coding RNA sequences of 18 - 24 nucleotides in length. They play an important role in post-transcriptional regulation of gene expression. Evidences of microRNA acting as promoter/suppressor of several diseases including cancer are being unveiled. Recent studies have shown that microRNAs are differentially expressed in disease states when compared with that of normal states. Profiling of microRNA is a good measure to estimate the differences in expression levels, which can be further utilized to understand the progression of any associated disease.

Methods

Machine learning techniques, when applied to microRNA expression values obtained from NGS data, could be utilized for the development of effective disease prediction system. This paper discusses an approach for microRNA expression profiling, its normalization and a Support Vector based machine learning technique to develop a Cancer Prediction System. Presently, the system has been trained with data samples of hepatocellular carcinoma, carcinomas of the bladder and lung cancer. microRNAs related to specific types of cancer were used to build the classifier.

Results

When the system is trained and tested with 10 fold cross validation, the prediction accuracy obtained is 97.56% for lung cancer, 97.82% for hepatocellular carcinoma and 95.0% for carcinomas of the bladder. The system is further validated with separate test sets, which show accuracies higher than 90%. A ranking based on differential expression marks the relative significance of each microRNA in the prediction process.

Conclusions

Results from experiments proved that microRNA expression profiling is an effective mechanism for disease identification, provided sufficiently large database is available.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ambros V, Lee RC, Lavanway A, Williams PT, Jewell D. Mirnas and other tiny endogenous rnas in c. elegans. Current Biol. 2003; 13(10):807–18.CrossRef Ambros V, Lee RC, Lavanway A, Williams PT, Jewell D. Mirnas and other tiny endogenous rnas in c. elegans. Current Biol. 2003; 13(10):807–18.CrossRef
2.
go back to reference Grifiths-Jones S. The mirna registry. Nucleic Acids Res. 2004; 32(10):D109–11.CrossRef Grifiths-Jones S. The mirna registry. Nucleic Acids Res. 2004; 32(10):D109–11.CrossRef
4.
go back to reference Reshmi G, Vinod Chandra SS, Janki M, Saneesh B, Santhi W, Surya R, Lakshmi S, Achuthsankar SN, Radhakrishna P. Identification and analysis of novel micrornas from fragile sites of human cervical cancer: Computational and experimental approach. Genomics. 2011; 97(6):333–40.CrossRefPubMed Reshmi G, Vinod Chandra SS, Janki M, Saneesh B, Santhi W, Surya R, Lakshmi S, Achuthsankar SN, Radhakrishna P. Identification and analysis of novel micrornas from fragile sites of human cervical cancer: Computational and experimental approach. Genomics. 2011; 97(6):333–40.CrossRefPubMed
5.
go back to reference Vinod Chandra SS, Reshmi G. A pre-microrna classifier by structural and thermodynamic motifs. In: Nature & Biologically Inspired Computing, 2009. NaBIC 2009. World Congress On. IEEE: 2009. p. 78–83. Vinod Chandra SS, Reshmi G. A pre-microrna classifier by structural and thermodynamic motifs. In: Nature & Biologically Inspired Computing, 2009. NaBIC 2009. World Congress On. IEEE: 2009. p. 78–83.
7.
go back to reference Salim A, Vinod Chandra SS. Computational prediction of micrornas and their targets. J Proteomics Bioinforma. 2014; 7:7:193–202. Salim A, Vinod Chandra SS. Computational prediction of micrornas and their targets. J Proteomics Bioinforma. 2014; 7:7:193–202.
8.
go back to reference Vinod Chandra SS, Reshmi G, Achuthsankar SN, Sreenathan S, Radhakrishna P. Mtar: A computational microrna target prediction architecture for human transcriptome. BMC Bioinforma. 2010; 10:1–19. Vinod Chandra SS, Reshmi G, Achuthsankar SN, Sreenathan S, Radhakrishna P. Mtar: A computational microrna target prediction architecture for human transcriptome. BMC Bioinforma. 2010; 10:1–19.
9.
go back to reference Calin C, George A, Carlo M C. Mirna signatures in human cancers. Nat Rev Cancer. 2006; 6(11):857–66.CrossRefPubMed Calin C, George A, Carlo M C. Mirna signatures in human cancers. Nat Rev Cancer. 2006; 6(11):857–66.CrossRefPubMed
10.
go back to reference Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F, Croce CM. Frequent deletions and down-regulation of micro- rna genes mir15 and mir16 at 13q14 in chronic lymphocytic leukemia. Nat Rev Cancer. 2002; 99(24):15524–9. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F, Croce CM. Frequent deletions and down-regulation of micro- rna genes mir15 and mir16 at 13q14 in chronic lymphocytic leukemia. Nat Rev Cancer. 2002; 99(24):15524–9.
11.
go back to reference Chia-Wei W, Shan-Chih L, Yu-Liang L, Ka-Lok N. Analysis of the nci-60 dataset for cancer related microrna and mrna using expression profiles. Compuational Biol Chem. 2013; 44:15–21.CrossRef Chia-Wei W, Shan-Chih L, Yu-Liang L, Ka-Lok N. Analysis of the nci-60 dataset for cancer related microrna and mrna using expression profiles. Compuational Biol Chem. 2013; 44:15–21.CrossRef
12.
go back to reference Ariel I, Roded S, Eytan R, Eithan G. Increased microrna activity in human cancers. PLoS ONE. 2009; 4(6):1–2. Ariel I, Roded S, Eytan R, Eithan G. Increased microrna activity in human cancers. PLoS ONE. 2009; 4(6):1–2.
13.
go back to reference Cho HM, Jeon HS, Lee SY, Jeong KJ, Park SY, Lee HY, Lee JU, Kwon SJ, Choi E, Na MJ, Kang J, et al. microrna-101 inhibits lung cancer invasion through the regulation of enhancer of zeste homolog 2. Exp Ther Med. 2011; 2(5):963–7.PubMedPubMedCentral Cho HM, Jeon HS, Lee SY, Jeong KJ, Park SY, Lee HY, Lee JU, Kwon SJ, Choi E, Na MJ, Kang J, et al. microrna-101 inhibits lung cancer invasion through the regulation of enhancer of zeste homolog 2. Exp Ther Med. 2011; 2(5):963–7.PubMedPubMedCentral
14.
go back to reference Bediaga NG, Davies MP, Acha-Sagredo A, Hyde R, Raji OY. A microrna-based prediction algorithm for diagnosis of non-small lung cell carcinoma in minimal biopsy material. British J Cancer. 2013; 109:2404–411.CrossRef Bediaga NG, Davies MP, Acha-Sagredo A, Hyde R, Raji OY. A microrna-based prediction algorithm for diagnosis of non-small lung cell carcinoma in minimal biopsy material. British J Cancer. 2013; 109:2404–411.CrossRef
15.
go back to reference Zhu C, Zhao Y, Zhang Z, Ni Y, Li X, H Y. Microrna-33a inhibits lung cancer cell proliferation and invasion by regulating the expression of Κ-catenin. Mol Med Rep. 2015; 11(5):3647–51.PubMed Zhu C, Zhao Y, Zhang Z, Ni Y, Li X, H Y. Microrna-33a inhibits lung cancer cell proliferation and invasion by regulating the expression of Κ-catenin. Mol Med Rep. 2015; 11(5):3647–51.PubMed
16.
go back to reference Zhong K, Chen K, Han L, Li B. Microrna-30b/c inhibits non-small cell lung cancer cell proliferation by targeting rab18. BMC Cancer. 2014; 14(1):1.CrossRef Zhong K, Chen K, Han L, Li B. Microrna-30b/c inhibits non-small cell lung cancer cell proliferation by targeting rab18. BMC Cancer. 2014; 14(1):1.CrossRef
17.
go back to reference Landi MT, Zhao Y, Rotunno M, Koshiol J, Liu H, Bergen AW, Rubagotti M, Goldstein AM, Linnoila I, Marincola FM. Microrna expression differentiates histology and predicts survival of lung cancer. Clin Cancer Res. 2010; 16(2):430–1.CrossRefPubMedPubMedCentral Landi MT, Zhao Y, Rotunno M, Koshiol J, Liu H, Bergen AW, Rubagotti M, Goldstein AM, Linnoila I, Marincola FM. Microrna expression differentiates histology and predicts survival of lung cancer. Clin Cancer Res. 2010; 16(2):430–1.CrossRefPubMedPubMedCentral
18.
go back to reference Laura G, Francesca F, Elisa C, Silvia S, Giovanni L, Carlo M C, Luigi B, Massimo N. Microrna involvement in hepatocellular carcinoma. J Cell Mol Med. 2008; 12(6A):2189–204.CrossRef Laura G, Francesca F, Elisa C, Silvia S, Giovanni L, Carlo M C, Luigi B, Massimo N. Microrna involvement in hepatocellular carcinoma. J Cell Mol Med. 2008; 12(6A):2189–204.CrossRef
19.
go back to reference Xie B, Ding Q, Han H, Wu D. mircancer: a microrna–cancer association database constructed by text mining on literature. Bioinformatics. 2013 btt014. Xie B, Ding Q, Han H, Wu D. mircancer: a microrna–cancer association database constructed by text mining on literature. Bioinformatics. 2013 btt014.
20.
go back to reference Ruepp A, Kowarsch A, Schmidl D, Buggenthin F, Brauner B, Dunger I, Fobo G, Frishman G, Montrone C, Theis FJ. Phenomir: a knowledgebase for microrna expression in diseases and biological processes. Genome biology. 2010; 11(1):R6.CrossRefPubMedPubMedCentral Ruepp A, Kowarsch A, Schmidl D, Buggenthin F, Brauner B, Dunger I, Fobo G, Frishman G, Montrone C, Theis FJ. Phenomir: a knowledgebase for microrna expression in diseases and biological processes. Genome biology. 2010; 11(1):R6.CrossRefPubMedPubMedCentral
22.
go back to reference Tam S, de Borja R, Tsao MS, McPherson JD. Robust global microrna expression profiling using next-generation sequencing technologies. Lab Investig. 2014; 94(3):350–8.CrossRefPubMed Tam S, de Borja R, Tsao MS, McPherson JD. Robust global microrna expression profiling using next-generation sequencing technologies. Lab Investig. 2014; 94(3):350–8.CrossRefPubMed
23.
go back to reference Kong Y. Btrim: A fast, lightweight adapter and quality trimming program for next-generation sequencing technologies. Genomics. 2011; 98(2):152–3.CrossRefPubMed Kong Y. Btrim: A fast, lightweight adapter and quality trimming program for next-generation sequencing technologies. Genomics. 2011; 98(2):152–3.CrossRefPubMed
24.
go back to reference Schmieder R, Lim YW, Rohwer F, Edwards R. Tagcleaner: Identification and removal of tag sequences from genomic and metagenomic datasets. BMC Bioinforma. 2010; 11(1):1–14.CrossRef Schmieder R, Lim YW, Rohwer F, Edwards R. Tagcleaner: Identification and removal of tag sequences from genomic and metagenomic datasets. BMC Bioinforma. 2010; 11(1):1–14.CrossRef
25.
go back to reference Falgueras J, Lara A, Fernández-Pozo N, Cantón F, Pérez-Trabado G, Claros M. Seqtrim: a high-throughput pipeline for pre-processing any type of sequence read. BMC Bioinformatics. 2010; 11(38):1–12. Falgueras J, Lara A, Fernández-Pozo N, Cantón F, Pérez-Trabado G, Claros M. Seqtrim: a high-throughput pipeline for pre-processing any type of sequence read. BMC Bioinformatics. 2010; 11(38):1–12.
27.
go back to reference Alientrimmer: A tool to quickly and accurately trim off multiple short contaminant sequences from high-throughput sequencing reads. Genomics. 2013; 102(5–6):500–506. Alientrimmer: A tool to quickly and accurately trim off multiple short contaminant sequences from high-throughput sequencing reads. Genomics. 2013; 102(5–6):500–506.
28.
go back to reference Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011; 17(1):10.CrossRef Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011; 17(1):10.CrossRef
29.
go back to reference Lindgreen S. Adapterremoval: easy cleaning of next-generation sequencing reads. BMC Research Notes. 2012; 5(1):1–7.CrossRef Lindgreen S. Adapterremoval: easy cleaning of next-generation sequencing reads. BMC Research Notes. 2012; 5(1):1–7.CrossRef
30.
go back to reference Jiang H, Lei R, Ding SW, Zhu S. Skewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end reads. BMC Bioinformatics. 2014; 15(1):1–12.CrossRef Jiang H, Lei R, Ding SW, Zhu S. Skewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end reads. BMC Bioinformatics. 2014; 15(1):1–12.CrossRef
31.
go back to reference Ayat H, Doruk B, Amanda E T, Ümit V a. Benchmarking short sequence mapping tools. BMC Bioinformatics. 2013; 14(184):1–25. Ayat H, Doruk B, Amanda E T, Ümit V a. Benchmarking short sequence mapping tools. BMC Bioinformatics. 2013; 14(184):1–25.
33.
go back to reference Ben L, Cole T, Mihai P, Steven L S. Ultrafast and memory-efficient alignment of short dna sequences to the human genome. Genome Biology. 2009; 10:r25.CrossRef Ben L, Cole T, Mihai P, Steven L S. Ultrafast and memory-efficient alignment of short dna sequences to the human genome. Genome Biology. 2009; 10:r25.CrossRef
34.
go back to reference Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, Wang J. Soap2: an improved ultrafast tool for short read alignment. Bioinformatics. 2009; 25(15):1966–1967.CrossRefPubMed Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, Wang J. Soap2: an improved ultrafast tool for short read alignment. Bioinformatics. 2009; 25(15):1966–1967.CrossRefPubMed
35.
go back to reference Li R, Li Y, Kristiansen K, Wang J. Soap: short oligonucleotide alignment program. Bioinformatics. 2008; 24(5):713–4.CrossRefPubMed Li R, Li Y, Kristiansen K, Wang J. Soap: short oligonucleotide alignment program. Bioinformatics. 2008; 24(5):713–4.CrossRefPubMed
36.
go back to reference Jason RM, Sergey K, Granger S. Soap: short oligonucleotide alignment program. Genomics. 2010; 95(6):315–26.CrossRef Jason RM, Sergey K, Granger S. Soap: short oligonucleotide alignment program. Genomics. 2010; 95(6):315–26.CrossRef
37.
go back to reference Hach F, Sarrafi I, Hormozdiari F, Alkan C, Eichler EE, Sahinalp SC. mrsfast-ultra: a compact, snp-aware mapper for high performance sequencing applications. Nucleic Acid Research. 2014; 42:494–500.CrossRef Hach F, Sarrafi I, Hormozdiari F, Alkan C, Eichler EE, Sahinalp SC. mrsfast-ultra: a compact, snp-aware mapper for high performance sequencing applications. Nucleic Acid Research. 2014; 42:494–500.CrossRef
38.
go back to reference Petra L, Andreas K, Eckart M. Micrornas – important molecules in lung cancer research. Frontiers in Genetics. 2012; 2(104):1–8. Petra L, Andreas K, Eckart M. Micrornas – important molecules in lung cancer research. Frontiers in Genetics. 2012; 2(104):1–8.
39.
go back to reference Kozomara A, Griffiths-Jones S. mirbase: annotating high confidence micrornas using deep sequencing data. Nucleic Acids Resear. 2014; 42:D68–D73.CrossRef Kozomara A, Griffiths-Jones S. mirbase: annotating high confidence micrornas using deep sequencing data. Nucleic Acids Resear. 2014; 42:D68–D73.CrossRef
40.
go back to reference Schee K, Lorenz S, Worren MM, Günther CC, Holden M, Hovig E, Fodstad Ø, Meza-Zepeda LA, Flatmark K. Deep sequencing the microrna transcriptome in colorectal cancer. PloS ONE. 2013; 8(6):e66165.CrossRefPubMedPubMedCentral Schee K, Lorenz S, Worren MM, Günther CC, Holden M, Hovig E, Fodstad Ø, Meza-Zepeda LA, Flatmark K. Deep sequencing the microrna transcriptome in colorectal cancer. PloS ONE. 2013; 8(6):e66165.CrossRefPubMedPubMedCentral
41.
go back to reference Johannes H S, Tobias M, Marcel M, Philipp R, Pieter M, Stefanie S, Theresa T, Jo V, Angelika E, Stefan S, Sven R, Alexander S. Deep sequencing reveals differential expression of micrornas in favorable versus unfavorable neuroblastoma. Nucleic Acids Res. 2010; 38(17):5919–928.CrossRef Johannes H S, Tobias M, Marcel M, Philipp R, Pieter M, Stefanie S, Theresa T, Jo V, Angelika E, Stefan S, Sven R, Alexander S. Deep sequencing reveals differential expression of micrornas in favorable versus unfavorable neuroblastoma. Nucleic Acids Res. 2010; 38(17):5919–928.CrossRef
42.
go back to reference Chang HT, Li SC, Ho MR, Pan HW, Ger LP, Hu LY, Yu SY, Li WH, Tsai KW. Comprehensive analysis of micrornas in breast cancer. BMC genomics. 2012; 13(7):1. Chang HT, Li SC, Ho MR, Pan HW, Ger LP, Hu LY, Yu SY, Li WH, Tsai KW. Comprehensive analysis of micrornas in breast cancer. BMC genomics. 2012; 13(7):1.
43.
go back to reference Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N. The sequence alignment/map format and samtools. Bioinformatics. 2019; 25(16):2078–079.CrossRef Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N. The sequence alignment/map format and samtools. Bioinformatics. 2019; 25(16):2078–079.CrossRef
44.
go back to reference Xu J, Zhu X, Wu L, Yang R, Yang Z, Wang Q, Wu F. Microrna-122 suppresses cell proliferation and induces cell apoptosis in hepatocellular carcinoma by directly targeting wnt/ β-catenin pathway. Liver International. 2012; 32(5):752–60.CrossRefPubMed Xu J, Zhu X, Wu L, Yang R, Yang Z, Wang Q, Wu F. Microrna-122 suppresses cell proliferation and induces cell apoptosis in hepatocellular carcinoma by directly targeting wnt/ β-catenin pathway. Liver International. 2012; 32(5):752–60.CrossRefPubMed
45.
go back to reference Guangxian X, Yilin Z, Jun W, Wei J, Zhaohui G, Zhaobo Z, Xiaoming L. Microrna-21 promotes hepatocellular carcinoma hepg2 cell proliferation through repression of mitogen-activated protein kinase-kinase 3. BMC Cancer. 2013; 13(469):1–9. Guangxian X, Yilin Z, Jun W, Wei J, Zhaohui G, Zhaobo Z, Xiaoming L. Microrna-21 promotes hepatocellular carcinoma hepg2 cell proliferation through repression of mitogen-activated protein kinase-kinase 3. BMC Cancer. 2013; 13(469):1–9.
46.
go back to reference Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, Stephens RM, Okamoto A, Yokota J, Tanaka T, et al. Unique microrna molecular profiles in lung cancer diagnosis and prognosis. Cancer cell. 2006; 9(3):189–98.CrossRefPubMed Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, Stephens RM, Okamoto A, Yokota J, Tanaka T, et al. Unique microrna molecular profiles in lung cancer diagnosis and prognosis. Cancer cell. 2006; 9(3):189–98.CrossRefPubMed
47.
go back to reference Avgeris M, Mavridis K, Tokas T, Stravodimos K, Fragoulis EG, Scorilas A. Uncovering the clinical utility of mir-143, mir-145 and mir-224 for predicting the survival of bladder cancer patients following treatment. 2015; 36(5):528–537. Avgeris M, Mavridis K, Tokas T, Stravodimos K, Fragoulis EG, Scorilas A. Uncovering the clinical utility of mir-143, mir-145 and mir-224 for predicting the survival of bladder cancer patients following treatment. 2015; 36(5):528–537.
48.
go back to reference Koussounadis A, Langdon SP, Um IH, Harrison DJ, Smith VA. Relationship between differentially expressed mrna and mrna-protein correlations in a xenograft model system. Scientific reports. 2015; 5:1–8.CrossRef Koussounadis A, Langdon SP, Um IH, Harrison DJ, Smith VA. Relationship between differentially expressed mrna and mrna-protein correlations in a xenograft model system. Scientific reports. 2015; 5:1–8.CrossRef
50.
go back to reference Zhang P, Zou M, Wen X, Gu F, Li J, Liu G, Dong J, Deng X, Gao J, Li X, Jia X, Dong Z, Chen L, Wang Y, Tian Y. Development of serum parameters panels for the early detection of pancreatic cancer. Int J Cancer. 2014; 134(11):2646–655.CrossRefPubMed Zhang P, Zou M, Wen X, Gu F, Li J, Liu G, Dong J, Deng X, Gao J, Li X, Jia X, Dong Z, Chen L, Wang Y, Tian Y. Development of serum parameters panels for the early detection of pancreatic cancer. Int J Cancer. 2014; 134(11):2646–655.CrossRefPubMed
51.
go back to reference Zou M, Zhang P, Wen X, Chen L, Tian Y, Wang Y. A novel mixed integer programming for multi-biomarker panel identification by distinguishing malignant from benign colorectal tumors. Methods. 2015; 3(17):3–17.CrossRef Zou M, Zhang P, Wen X, Chen L, Tian Y, Wang Y. A novel mixed integer programming for multi-biomarker panel identification by distinguishing malignant from benign colorectal tumors. Methods. 2015; 3(17):3–17.CrossRef
52.
go back to reference Mishra PJ. Micrornas as promising biomarkers in cancer diagnostics. Biomarker Research. 2014; 2(1):1–4.CrossRef Mishra PJ. Micrornas as promising biomarkers in cancer diagnostics. Biomarker Research. 2014; 2(1):1–4.CrossRef
53.
go back to reference Paolo N, Muller F. Exosomic micrornas in the tumor microenvironment. Front Med. 2015; 2(47):1–6. Paolo N, Muller F. Exosomic micrornas in the tumor microenvironment. Front Med. 2015; 2(47):1–6.
Metadata
Title
An approach to forecast human cancer by profiling microRNA expressions from NGS data
Authors
A. Salim
R. Amjesh
S. S. Vinod Chandra
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2017
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-016-3042-2

Other articles of this Issue 1/2017

BMC Cancer 1/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine