Skip to main content
Top
Published in: BMC Cancer 1/2016

Open Access 01-12-2016 | Research article

Evaluation of folate receptor 1 (FOLR1) mRNA expression, its specific promoter methylation and global DNA hypomethylation in type I and type II ovarian cancers

Authors: Sara Notaro, Daniel Reimer, Heidi Fiegl, Gabriel Schmid, Annamarie Wiedemair, Julia Rössler, Christian Marth, Alain Gustave Zeimet

Published in: BMC Cancer | Issue 1/2016

Login to get access

Abstract

Background

In this retrospective study we evaluated the respective correlations and clinical relevance of FOLR1 mRNA expression, FOLR1 promoter specific methylation and global DNA hypomethylation in type I and type II ovarian cancer.

Methods

Two hundred fifty four ovarian cancers, 13 borderline tumours and 60 samples of healthy fallopian epithelium and normal ovarian epithelium were retrospectively analysed for FOLR1 expression with RT-PCR. FOLR1 DNA promoter methylation and global DNA hypomethylation (measured by means of LINE1 DNA hypomethylation) were evaluated with MethyLight technique.

Results

No correlation between FOLR1 mRNA expression and its specific promoter DNA methylation was found neither in type I nor in type II cancers, however, high FOLR1 mRNA expression was found to be correlated with global DNA hypomethylation in type II cancers (p = 0.033). Strong FOLR1 mRNA expression was revealed for Grades 2-3, FIGO stages III-IV, residual disease > 0, and serous histotype. High FOLR1 expression was found to predict increased platinum sensitivity in type I cancers (odds ratio = 3.288; 1.256-10.75; p = 0.020). One-year survival analysis showed in type I cancers an independent better outcome for strong expression of FOLR1 in FIGO stage III and IV. For the entire follow up period no significant independent outcome for FOLR1 expression was revealed. In type I cancers LINE 1 DNA hypomethylation was found to exhibit a worse PFS and OS which were confirmed to be independent in multivariate COX regression model for both PFS (p = 0.026) and OS (p = 0.012).

Conclusion

No correlations were found between FOLR1 expression and its specific promoter methylation, however, high FOLR1 mRNA expression was associated with DNA hypomethylation in type II cancers. FOLR1 mRNA expression did not prove to predict clinical outcome in type II cancers, although strong FOLR1 expression generally denotes ovarian cancers with highly aggressive phenotype. In type I cancers, however, strong FOLR1 expression has been found to be a reliable indicator of improved platinum responsiveness reflecting a transient better one-year follow up outcome in highly FOLR1 expressing type I cancers. An independent prognostic role of global DNA hypomethylation was demonstrated in type I tumours.
Appendix
Available only for authorised users
Literature
1.
go back to reference Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ. Cancer statistics, 2007. CA Cancer J Clin. 2007;57:43–66.CrossRefPubMed Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ. Cancer statistics, 2007. CA Cancer J Clin. 2007;57:43–66.CrossRefPubMed
2.
go back to reference Choi SW, Mason JB. Folate and carcinogenesis: an integrated scheme. J Nutr. 2000;130:129–32.PubMed Choi SW, Mason JB. Folate and carcinogenesis: an integrated scheme. J Nutr. 2000;130:129–32.PubMed
3.
go back to reference Zhao R, Goldman ID. The molecular identity andcharacterization of a Proton-coupled Folate Transporter–PCFT; biologica lramifications and impact on the activity of pemetrexed. Cancer Metastasis Rev. 2007;26(1):129–39.CrossRefPubMed Zhao R, Goldman ID. The molecular identity andcharacterization of a Proton-coupled Folate Transporter–PCFT; biologica lramifications and impact on the activity of pemetrexed. Cancer Metastasis Rev. 2007;26(1):129–39.CrossRefPubMed
4.
go back to reference Nakai Y, Inoue K, Abe N, Hatakeyama M, Ohta KY, Otagiri M, et al. Functional characterization of human proton-coupled folate transporter/heme carrier protein 1 heterologously expressed in mammalian cells as a folate transporter. J Pharmacol Exp Ther. 2007;322(2):469–76.CrossRefPubMed Nakai Y, Inoue K, Abe N, Hatakeyama M, Ohta KY, Otagiri M, et al. Functional characterization of human proton-coupled folate transporter/heme carrier protein 1 heterologously expressed in mammalian cells as a folate transporter. J Pharmacol Exp Ther. 2007;322(2):469–76.CrossRefPubMed
5.
go back to reference Rijnboutt S, Jansen G, Posthuma G, Hynes JB, Schornagel JH, Strous G. Endocytosis of GPI-linked membrane folate receptor-a. J Cell Biol. 1996;132(1-2):35–47.CrossRefPubMed Rijnboutt S, Jansen G, Posthuma G, Hynes JB, Schornagel JH, Strous G. Endocytosis of GPI-linked membrane folate receptor-a. J Cell Biol. 1996;132(1-2):35–47.CrossRefPubMed
6.
go back to reference Kaufman Y, Drori S, Cole PD, Kamen BA, Sirota J, Ifergan I, et al. Reduced folate carrier mutations are not the mechanism underlying methotrexate resistance in childhood acute lymphoblastic leukemia. Cancer. 2004;100(4):773–82.CrossRefPubMed Kaufman Y, Drori S, Cole PD, Kamen BA, Sirota J, Ifergan I, et al. Reduced folate carrier mutations are not the mechanism underlying methotrexate resistance in childhood acute lymphoblastic leukemia. Cancer. 2004;100(4):773–82.CrossRefPubMed
7.
go back to reference Elnakat H, Ratnam M. Membrane transport of folates. Vitam Horm. 2003;66:403–56.CrossRef Elnakat H, Ratnam M. Membrane transport of folates. Vitam Horm. 2003;66:403–56.CrossRef
8.
go back to reference Elnakat H, Ratnam M. Distribution, functionality and gene regulation of folate receptor isoforms: implications in targeted therapy. Advanced Drug Delivery. 2004;1067–1084. Elnakat H, Ratnam M. Distribution, functionality and gene regulation of folate receptor isoforms: implications in targeted therapy. Advanced Drug Delivery. 2004;1067–1084.
9.
go back to reference Ross JF, Chaudhuri PK, Ratnam M. Differential regulation of folate receptor isoforms in normal and malignant tissues in vivo and in established cell lines. Physiologic and clinical implications. Cancer. 1994;73(9):2432–43.CrossRefPubMed Ross JF, Chaudhuri PK, Ratnam M. Differential regulation of folate receptor isoforms in normal and malignant tissues in vivo and in established cell lines. Physiologic and clinical implications. Cancer. 1994;73(9):2432–43.CrossRefPubMed
10.
go back to reference Weitman SD, Lark RH, Coney LR, Fort DW, Frasca V, Zurawski Jr VR, et al. Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues. Cancer Res. 1992;52(12):3396–401.PubMed Weitman SD, Lark RH, Coney LR, Fort DW, Frasca V, Zurawski Jr VR, et al. Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues. Cancer Res. 1992;52(12):3396–401.PubMed
11.
go back to reference Kelemen LE, Sellers TA, Keeney GL, Lingle WL. Multivitamin and alcohol intake and folate receptor alpha expression in ovarian cancer. Cancer Epidemiol Biomarkers Prev. 2005;14(9):2168–72.CrossRefPubMed Kelemen LE, Sellers TA, Keeney GL, Lingle WL. Multivitamin and alcohol intake and folate receptor alpha expression in ovarian cancer. Cancer Epidemiol Biomarkers Prev. 2005;14(9):2168–72.CrossRefPubMed
12.
go back to reference Tomassetti A, Mangiarotti F, Mazzi M, Sfoorzini S, Miotti S, Galmozzi E, et al. The variant hepatocyte nuclear factor 1 activates the P1 promoter of the human-folate receptor gene in ovarian carcinoma. Cancer Res. 2003;63(3):696–704.PubMed Tomassetti A, Mangiarotti F, Mazzi M, Sfoorzini S, Miotti S, Galmozzi E, et al. The variant hepatocyte nuclear factor 1 activates the P1 promoter of the human-folate receptor gene in ovarian carcinoma. Cancer Res. 2003;63(3):696–704.PubMed
13.
go back to reference Pillai MR, Chacko P, Kesari LA, Jayaprakash PG, Jayaram HN, Antony AC. Expression of folate receptors and heterogeneous nuclear ribonucleoprotein E1 in women with human papillomavirus mediated transformation of cervical tissue to cancer. J Clin Pathol. 2003;56(8):569–74.CrossRefPubMedPubMedCentral Pillai MR, Chacko P, Kesari LA, Jayaprakash PG, Jayaram HN, Antony AC. Expression of folate receptors and heterogeneous nuclear ribonucleoprotein E1 in women with human papillomavirus mediated transformation of cervical tissue to cancer. J Clin Pathol. 2003;56(8):569–74.CrossRefPubMedPubMedCentral
14.
go back to reference Parker N, Turk MJ, Westrick E, Lewis JD, Low PS, Leamon CP. Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay. Anal Biochem. 2005;338(2):284–93.CrossRefPubMed Parker N, Turk MJ, Westrick E, Lewis JD, Low PS, Leamon CP. Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay. Anal Biochem. 2005;338(2):284–93.CrossRefPubMed
15.
go back to reference Naumann RW, Coleman RL, Burger RA, Sausville EA, Kutarska E, Ghamande SA, et al. PRECEDENT: A Randomized Phase II Trial Comparing Vintafolide (EC145) and Pegylated Liposomal Doxorubicin (PLD) in Combination Versus PLD Alone in Patients With Platinum-Resistant Ovarian Cancer. J Clin Oncol. 2013;31(35):4400–6.CrossRefPubMed Naumann RW, Coleman RL, Burger RA, Sausville EA, Kutarska E, Ghamande SA, et al. PRECEDENT: A Randomized Phase II Trial Comparing Vintafolide (EC145) and Pegylated Liposomal Doxorubicin (PLD) in Combination Versus PLD Alone in Patients With Platinum-Resistant Ovarian Cancer. J Clin Oncol. 2013;31(35):4400–6.CrossRefPubMed
16.
go back to reference Turek-Plewa J, Jagodziski PP. The role of mammalian DNA methyltransferases in the regulation of gene expression. Cell Mol Biol Lett. 2005;10(4):631–47.PubMed Turek-Plewa J, Jagodziski PP. The role of mammalian DNA methyltransferases in the regulation of gene expression. Cell Mol Biol Lett. 2005;10(4):631–47.PubMed
17.
go back to reference Wilson AS, Power BE, Molloy PL. DNA hypomethylation and human diseases. Biochim Biophys Acta. 2007;1775(1):138–62.PubMed Wilson AS, Power BE, Molloy PL. DNA hypomethylation and human diseases. Biochim Biophys Acta. 2007;1775(1):138–62.PubMed
18.
go back to reference Baylin SB, Herman JG, Graff JR, Vertino PM, Issa JP. Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv Cancer Res. 1998;72:141–96.CrossRefPubMed Baylin SB, Herman JG, Graff JR, Vertino PM, Issa JP. Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv Cancer Res. 1998;72:141–96.CrossRefPubMed
19.
go back to reference Eden A, Gaudet F, Waghmare A, Jaenisch R. Chromosomal instability and tumors promoted by DNA hypomethylation. Science. 2003;300(5618):455.CrossRefPubMed Eden A, Gaudet F, Waghmare A, Jaenisch R. Chromosomal instability and tumors promoted by DNA hypomethylation. Science. 2003;300(5618):455.CrossRefPubMed
20.
go back to reference Elwood PC, Nachmanoff K, Saikawa Y, Page ST, Pacheco P, Roberts S, et al. The divergent 5 termini of the human folate receptor (hFR) mRNAs originate from two tissue-specific promoters and alternative splicing: characterization of the hFR gene structure. Biochemistry. 1997;36(6):1467–78.CrossRefPubMed Elwood PC, Nachmanoff K, Saikawa Y, Page ST, Pacheco P, Roberts S, et al. The divergent 5 termini of the human folate receptor (hFR) mRNAs originate from two tissue-specific promoters and alternative splicing: characterization of the hFR gene structure. Biochemistry. 1997;36(6):1467–78.CrossRefPubMed
21.
go back to reference Saikawa Y, Price D, Hance KW, Chen TY, Elwood P. Structural and functional analysis of the human KB cell folate receptor gene P4 promoter: cooperation of three clustered Sp1-binding sites with initiator region for basal promoter activity. Biochemistry. 1995;34(31):9951–61.CrossRefPubMed Saikawa Y, Price D, Hance KW, Chen TY, Elwood P. Structural and functional analysis of the human KB cell folate receptor gene P4 promoter: cooperation of three clustered Sp1-binding sites with initiator region for basal promoter activity. Biochemistry. 1995;34(31):9951–61.CrossRefPubMed
22.
go back to reference Hsueh CT, Dolnick B. Altered folate binding protein mRNA stability in KB cells grown in folate-deficient medium. Biochem Pharmacol. 1993;45(12):2537–45.CrossRefPubMed Hsueh CT, Dolnick B. Altered folate binding protein mRNA stability in KB cells grown in folate-deficient medium. Biochem Pharmacol. 1993;45(12):2537–45.CrossRefPubMed
23.
go back to reference Kelemen LE. The role of folate receptor a in cancer development, progression and treatment: Cause, consequence or innocent bystander? Int J Cancer. 2006;119(2):243–50.CrossRefPubMed Kelemen LE. The role of folate receptor a in cancer development, progression and treatment: Cause, consequence or innocent bystander? Int J Cancer. 2006;119(2):243–50.CrossRefPubMed
24.
25.
go back to reference Kurman RJ, Shih IM. Molecular pathogenesis and extraovarian origin of epithelial ovarian cancer--shifting the paradigm. Hum Pathol. 2011;42(7):918–31.CrossRefPubMedPubMedCentral Kurman RJ, Shih IM. Molecular pathogenesis and extraovarian origin of epithelial ovarian cancer--shifting the paradigm. Hum Pathol. 2011;42(7):918–31.CrossRefPubMedPubMedCentral
26.
go back to reference Markman M, Bookmanb MA. Second-line treatment of ovarian cancer. The Oncologist. 2000;5(1):26–35.CrossRefPubMed Markman M, Bookmanb MA. Second-line treatment of ovarian cancer. The Oncologist. 2000;5(1):26–35.CrossRefPubMed
27.
go back to reference Reimer D, Sadr S, Wiedemair A, Stadlmann S, Concin N, Hofstetter G, et al. Clinical relevance of E2F family members in ovarian cancer—an evaluation in a training set of 77 patients. Clin Cancer Res. 2007;13:144–51.CrossRefPubMed Reimer D, Sadr S, Wiedemair A, Stadlmann S, Concin N, Hofstetter G, et al. Clinical relevance of E2F family members in ovarian cancer—an evaluation in a training set of 77 patients. Clin Cancer Res. 2007;13:144–51.CrossRefPubMed
28.
go back to reference Bieche I, Franc B, Vidaud D, Vidaud M, Lidereau R. Analyses of MYC, ERBB2, and CCND1 genes in benign and malignant thyroid follicular cell tumors by real-time polymerase chain reaction. Thyroid. 2001;11(2):147–52.CrossRefPubMed Bieche I, Franc B, Vidaud D, Vidaud M, Lidereau R. Analyses of MYC, ERBB2, and CCND1 genes in benign and malignant thyroid follicular cell tumors by real-time polymerase chain reaction. Thyroid. 2001;11(2):147–52.CrossRefPubMed
29.
go back to reference Zeimet AG, Fiegl H, Goebel G, Kopp F, Allasia C, Reimer D, et al. DNA ploidy, nuclear size, proliferation index and DNA hypomethylation in ovarian cancer. Gyn Oncol. 2011;121(1):24–31.CrossRef Zeimet AG, Fiegl H, Goebel G, Kopp F, Allasia C, Reimer D, et al. DNA ploidy, nuclear size, proliferation index and DNA hypomethylation in ovarian cancer. Gyn Oncol. 2011;121(1):24–31.CrossRef
31.
go back to reference Stewart DJ, Nunez MI, Jelinek J, Hong D, Gupta S, Issa JP et al. Decitabine impact on the endocytosis regulator RhoA, the folate carriers RFC1 and FOLR1, and the glucose transporter GLUT4 in human tumors. Clin Epigenetics. 2014. 9;6(1):2. Stewart DJ, Nunez MI, Jelinek J, Hong D, Gupta S, Issa JP et al. Decitabine impact on the endocytosis regulator RhoA, the folate carriers RFC1 and FOLR1, and the glucose transporter GLUT4 in human tumors. Clin Epigenetics. 2014. 9;6(1):2.
32.
go back to reference Wiegand KC, Shah SP, Al-Agha OM, Zhao Y, Tse K, Zeng T, et al. ARID1A mutations in endometriosis-associated ovarian carcinomas. Engl J Med. 2010;363(16):1532–43.CrossRef Wiegand KC, Shah SP, Al-Agha OM, Zhao Y, Tse K, Zeng T, et al. ARID1A mutations in endometriosis-associated ovarian carcinomas. Engl J Med. 2010;363(16):1532–43.CrossRef
33.
go back to reference Kurman RJ. Origin and molecular pathogenesis of ovarian high-grade serous carcinoma. Ann Oncol. 2013; Suppl 10:x16-21. Kurman RJ. Origin and molecular pathogenesis of ovarian high-grade serous carcinoma. Ann Oncol. 2013; Suppl 10:x16-21.
34.
go back to reference Chen YL, Chang MC, Huang CY, Chiang YC, Lin HW, Chen CA, et al. Serous ovarian carcinoma patients with high alpha-folate receptor had reducing survival and cytotoxic chemo-response. Mol Oncol. 2012;6(3):360–9.CrossRefPubMed Chen YL, Chang MC, Huang CY, Chiang YC, Lin HW, Chen CA, et al. Serous ovarian carcinoma patients with high alpha-folate receptor had reducing survival and cytotoxic chemo-response. Mol Oncol. 2012;6(3):360–9.CrossRefPubMed
35.
go back to reference Siu MK, Kong DS, Chan HY, Wong ES, Ip PP, Jiang L, et al. Paradoxical impact of two folate receptors, FRα and RFC, in ovarian cancer: effect on cell proliferation, invasion and clinical outcome. PLoS One. 2012;7(11), e47201.CrossRefPubMedPubMedCentral Siu MK, Kong DS, Chan HY, Wong ES, Ip PP, Jiang L, et al. Paradoxical impact of two folate receptors, FRα and RFC, in ovarian cancer: effect on cell proliferation, invasion and clinical outcome. PLoS One. 2012;7(11), e47201.CrossRefPubMedPubMedCentral
36.
go back to reference Köbel M, Madore J, Ramus SJ, Clarke BA, Pharoah PD, Deen S, et al. Evidence for a time-dependent association between FOLR1 expression and survival from ovarian carcinoma: implications for clinical testing. An Ovarian Tumour Tissue Analysis consortium study. Br J Cancer. 2014;111(12):2297–307.CrossRefPubMedPubMedCentral Köbel M, Madore J, Ramus SJ, Clarke BA, Pharoah PD, Deen S, et al. Evidence for a time-dependent association between FOLR1 expression and survival from ovarian carcinoma: implications for clinical testing. An Ovarian Tumour Tissue Analysis consortium study. Br J Cancer. 2014;111(12):2297–307.CrossRefPubMedPubMedCentral
37.
go back to reference Morris RT, Joyrich RN, Naumann RW, Shah NP, Maurer AH, Strauss HW, et al. Phase II study of treatment of advanced ovarian cancer with folate-receptor-targeted therapeutic (vintafolide) and companion SPECT-based imaging agent (99mTc-etarfolatide). Ann Oncol. 2014;25(4):852–8.CrossRefPubMed Morris RT, Joyrich RN, Naumann RW, Shah NP, Maurer AH, Strauss HW, et al. Phase II study of treatment of advanced ovarian cancer with folate-receptor-targeted therapeutic (vintafolide) and companion SPECT-based imaging agent (99mTc-etarfolatide). Ann Oncol. 2014;25(4):852–8.CrossRefPubMed
38.
go back to reference Widschwendter M, Jiang G, Woods C, Müller HM, Fiegl H, Goebel G, et al. DNA hypomethylation and ovarian cancer biology. Cancer Res. 2004;64(13):4472–80.CrossRefPubMed Widschwendter M, Jiang G, Woods C, Müller HM, Fiegl H, Goebel G, et al. DNA hypomethylation and ovarian cancer biology. Cancer Res. 2004;64(13):4472–80.CrossRefPubMed
39.
go back to reference Liu JJ, Ward RL. Folate and one-carbon metabolism and its impact on aberrant DNA methylation in cancer. Adv Genet. 2010;71:79–121.CrossRefPubMed Liu JJ, Ward RL. Folate and one-carbon metabolism and its impact on aberrant DNA methylation in cancer. Adv Genet. 2010;71:79–121.CrossRefPubMed
Metadata
Title
Evaluation of folate receptor 1 (FOLR1) mRNA expression, its specific promoter methylation and global DNA hypomethylation in type I and type II ovarian cancers
Authors
Sara Notaro
Daniel Reimer
Heidi Fiegl
Gabriel Schmid
Annamarie Wiedemair
Julia Rössler
Christian Marth
Alain Gustave Zeimet
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2016
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-016-2637-y

Other articles of this Issue 1/2016

BMC Cancer 1/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine