Skip to main content
Top
Published in: BMC Cancer 1/2016

Open Access 01-12-2016 | Research article

Association between alcohol intake and the risk of pancreatic cancer: a dose–response meta-analysis of cohort studies

Authors: Ye-Tao Wang, Ya-Wen Gou, Wen-Wen Jin, Mei Xiao, Hua-Ying Fang

Published in: BMC Cancer | Issue 1/2016

Login to get access

Abstract

Background

Studies examining the association between alcohol intake and the risk of pancreatic cancer have given inconsistent results. The purpose of this study was to summarize and examine the evidence regarding the association between alcohol intake and pancreatic cancer risk based on results from prospective cohort studies.

Methods

We searched electronic databases consisting of PubMed, Ovid, Embase, and the Cochrane Library identifying studies published up to Aug 2015. Only prospective studies that reported effect estimates with 95 % confidence intervals (CIs) for the risk of pancreatic cancer, examining different alcohol intake categories compared with a low alcohol intake category were included. Results of individual studies were pooled using a random-effects model.

Results

We included 19 prospective studies (21 cohorts) reporting data from 4,211,129 individuals. Low-to-moderate alcohol intake had little or no effect on the risk of pancreatic cancer. High alcohol intake was associated with an increased risk of pancreatic cancer (risk ratio [RR], 1.15; 95 % CI: 1.06–1.25). Pooled analysis also showed that high liquor intake was associated with an increased risk of pancreatic cancer (RR, 1.43; 95 % CI: 1.17–1.74). Subgroup analyses suggested that high alcohol intake was associated with an increased risk of pancreatic cancer in North America, when the duration of follow-up was greater than 10 years, in studies scored as high quality, and in studies with adjustments for smoking status, body mass index, diabetes mellitus, and energy intake..

Conclusions

Low-to-moderate alcohol intake was not significantly associated with the risk of pancreatic cancer, whereas high alcohol intake was associated with an increased risk of pancreatic cancer. Furthermore, liquor intake in particular was associated with an increased risk of pancreatic cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ferlay J, Soerjomataram I, Ervik M, et al. GLOBOCAN 2012 v1.1, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11 [Internet]. Lyon, France: International Agency for Research on Cancer; 2014. Available from: http://globocan.iarc.fr, accessed on 16/01/2015. Ferlay J, Soerjomataram I, Ervik M, et al. GLOBOCAN 2012 v1.1, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11 [Internet]. Lyon, France: International Agency for Research on Cancer; 2014. Available from: http://​globocan.​iarc.​fr, accessed on 16/01/2015.
2.
go back to reference Everhart J, Wright D. Diabetes mellitus as a risk factor for pancreatic cancer. JAMA. 1995;273:1605–9.CrossRefPubMed Everhart J, Wright D. Diabetes mellitus as a risk factor for pancreatic cancer. JAMA. 1995;273:1605–9.CrossRefPubMed
3.
go back to reference Villeneuve PJ, Johnson KC, Hanley AJG, et al. Canadian cancer registries epidemiology research group. Alcohol, tobacco, and coffee consumption and the risk of pancreatic cancer: results from the Canadian Enhanced Surveillance System case–control project. Eur J Cancer Prev. 2000;9:49.CrossRefPubMed Villeneuve PJ, Johnson KC, Hanley AJG, et al. Canadian cancer registries epidemiology research group. Alcohol, tobacco, and coffee consumption and the risk of pancreatic cancer: results from the Canadian Enhanced Surveillance System case–control project. Eur J Cancer Prev. 2000;9:49.CrossRefPubMed
4.
go back to reference Patel AV, Rodriguez C, Bernstein L, et al. Obesity, recreational physical activity, and risk of pancreatic cancer in a large US cohort. Cancer Epidemiol Biomarkers Prev. 2005;14:459–66.CrossRefPubMed Patel AV, Rodriguez C, Bernstein L, et al. Obesity, recreational physical activity, and risk of pancreatic cancer in a large US cohort. Cancer Epidemiol Biomarkers Prev. 2005;14:459–66.CrossRefPubMed
6.
go back to reference Tramacere I, Scotti L, Jenab M, et al. Alcohol drinking and pancreatic cancer risk: a meta-analysis of the dose-risk relation. Int J Cancer. 2010;126:1474–86.PubMed Tramacere I, Scotti L, Jenab M, et al. Alcohol drinking and pancreatic cancer risk: a meta-analysis of the dose-risk relation. Int J Cancer. 2010;126:1474–86.PubMed
7.
go back to reference Michaud DS, Vrieling A, Jiao L, et al. Alcohol intake and pancreatic cancer: a pooled analysis from the pancreatic cancer cohort consortium (PanScan). Cancer Causes Control. 2010;21(8):1213–25.CrossRefPubMedPubMedCentral Michaud DS, Vrieling A, Jiao L, et al. Alcohol intake and pancreatic cancer: a pooled analysis from the pancreatic cancer cohort consortium (PanScan). Cancer Causes Control. 2010;21(8):1213–25.CrossRefPubMedPubMedCentral
8.
go back to reference Genkinger JM, Spiegelman D, Anderson KE, et al. Alcohol intake and pancreatic cancer risk: a pooled analysis of fourteen cohort studies. Cancer Epidemiol Biomarkers Prev. 2009;18:765–76.CrossRefPubMedPubMedCentral Genkinger JM, Spiegelman D, Anderson KE, et al. Alcohol intake and pancreatic cancer risk: a pooled analysis of fourteen cohort studies. Cancer Epidemiol Biomarkers Prev. 2009;18:765–76.CrossRefPubMedPubMedCentral
9.
go back to reference Rohrmann S, Linseisen J, Vrieling A, et al. Ethanol intake and the risk of pancreatic cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC). Cancer Causes Control. 2009;20(5):785–94.CrossRefPubMedPubMedCentral Rohrmann S, Linseisen J, Vrieling A, et al. Ethanol intake and the risk of pancreatic cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC). Cancer Causes Control. 2009;20(5):785–94.CrossRefPubMedPubMedCentral
10.
go back to reference Lin Y, Tamakoshi A, Kawamura T, et al. Risk of pancreatic cancer in relation to alcohol drinking, coffee consumption and medical history: finding from the Japan collaborative cohort study for evaluation of cancer risk. In J Cancer. 2002;99:742–6. Lin Y, Tamakoshi A, Kawamura T, et al. Risk of pancreatic cancer in relation to alcohol drinking, coffee consumption and medical history: finding from the Japan collaborative cohort study for evaluation of cancer risk. In J Cancer. 2002;99:742–6.
11.
go back to reference Michaud DS, Giovannucci E, Willett WC, et al. Coffee and alcohol consumption and the risk of pancreatic cancer in two prospective United States Cohorts. Cancer Epidemiol Biomarkers Prev. 2001;10:429–37.PubMed Michaud DS, Giovannucci E, Willett WC, et al. Coffee and alcohol consumption and the risk of pancreatic cancer in two prospective United States Cohorts. Cancer Epidemiol Biomarkers Prev. 2001;10:429–37.PubMed
12.
go back to reference American Cancer Society. Cancer Facts and Figures. Atlanta, GA: American Cancer Society; 2009. American Cancer Society. Cancer Facts and Figures. Atlanta, GA: American Cancer Society; 2009.
13.
go back to reference Kuzmickiene I, Everatt R, Virviciute D, et al. Smoking and other risk factors for pancreatic cancer: A cohort study in men in Lithuania. Cancer Epidemiol. 2013;37:133–9.CrossRefPubMed Kuzmickiene I, Everatt R, Virviciute D, et al. Smoking and other risk factors for pancreatic cancer: A cohort study in men in Lithuania. Cancer Epidemiol. 2013;37:133–9.CrossRefPubMed
14.
go back to reference Baglietto L, Giles GG, English DR, et al. Alcohol consumption and risk of glioblastoma; evidence from the Melbourne Collaborative Cohort Study. Int J Cancer. 2011;128:1929–34.CrossRefPubMed Baglietto L, Giles GG, English DR, et al. Alcohol consumption and risk of glioblastoma; evidence from the Melbourne Collaborative Cohort Study. Int J Cancer. 2011;128:1929–34.CrossRefPubMed
15.
go back to reference Nakamura K, Nagata C, Wada K, et al. Cigarette smoking and other lifestyle factors in relation to the risk of pancreatic cancer death: a prospective cohort study in Japan. Jpn J Clin Oncol. 2011;41(2):225–31.CrossRefPubMed Nakamura K, Nagata C, Wada K, et al. Cigarette smoking and other lifestyle factors in relation to the risk of pancreatic cancer death: a prospective cohort study in Japan. Jpn J Clin Oncol. 2011;41(2):225–31.CrossRefPubMed
16.
go back to reference Gapstur SM, Jacobs EJ, Deka A, et al. Association of alcohol intake with pancreatic cancer mortality in never smokers. Arch Intern Med. 2011;171(5):444–51.CrossRefPubMed Gapstur SM, Jacobs EJ, Deka A, et al. Association of alcohol intake with pancreatic cancer mortality in never smokers. Arch Intern Med. 2011;171(5):444–51.CrossRefPubMed
17.
go back to reference Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis of observational studies in epidemiology (MOOSE) group. JAMA. 2000;283:2008–12.CrossRefPubMed Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis of observational studies in epidemiology (MOOSE) group. JAMA. 2000;283:2008–12.CrossRefPubMed
18.
go back to reference Wells G, Shea B, O’Connell D. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Ottawa (ON): Ottawa Hospital Research Institute; 2009. Available:http://www.ohri.ca/programs/clinical epidemiology/oxford.htm. Wells G, Shea B, O’Connell D. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Ottawa (ON): Ottawa Hospital Research Institute; 2009. Available:http://​www.​ohri.​ca/​programs/​clinical epidemiology/oxford.htm.
20.
go back to reference Cooper H, Hedges LV, Valentine JC. Handbook of research synthesis and meta-analysis. Russell Sage Foundation; 2009. Cooper H, Hedges LV, Valentine JC. Handbook of research synthesis and meta-analysis. Russell Sage Foundation; 2009.
21.
go back to reference Greenland S, Robins JM. Estimation of a common effect parameter from sparse follow-up data. Biometrics. 1985;41:55–68.CrossRefPubMed Greenland S, Robins JM. Estimation of a common effect parameter from sparse follow-up data. Biometrics. 1985;41:55–68.CrossRefPubMed
22.
23.
go back to reference Ades AE, Lu G, Higgins JP. The interpretation of random-effects metaanalysis in decision models. Med Decis Making. 2005;25:646–54.CrossRefPubMed Ades AE, Lu G, Higgins JP. The interpretation of random-effects metaanalysis in decision models. Med Decis Making. 2005;25:646–54.CrossRefPubMed
24.
go back to reference Orsini N, Bellocco R, Greenland S. Generalized least squares for trend estimation of summarized dose–response data. Stata J. 2006;6:40–57. Orsini N, Bellocco R, Greenland S. Generalized least squares for trend estimation of summarized dose–response data. Stata J. 2006;6:40–57.
25.
go back to reference Greenland S, Longnecker MP. Methods for trend estimation from summarized dose–response data, with applications to meta-analysis. Am J Epidemiol. 1992;135:1301–9.CrossRefPubMed Greenland S, Longnecker MP. Methods for trend estimation from summarized dose–response data, with applications to meta-analysis. Am J Epidemiol. 1992;135:1301–9.CrossRefPubMed
26.
go back to reference Deeks JJ, Higgins JPT, Altman DG. Analyzing data and undertaking meta-analyses. In: Higgins J, Green S, editors. Cochrane Handbook for Systematic Reviews of Interventions 5.0.1. Oxford, UK: The Cochrane Collaboration; 2008. chap 9. Deeks JJ, Higgins JPT, Altman DG. Analyzing data and undertaking meta-analyses. In: Higgins J, Green S, editors. Cochrane Handbook for Systematic Reviews of Interventions 5.0.1. Oxford, UK: The Cochrane Collaboration; 2008. chap 9.
28.
go back to reference Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21:1539–58.CrossRefPubMed Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21:1539–58.CrossRefPubMed
29.
go back to reference Tobias A. Assessing the influence of a single study in meta-analysis. Stata Tech Bull. 1999;47:15–7. Tobias A. Assessing the influence of a single study in meta-analysis. Stata Tech Bull. 1999;47:15–7.
31.
go back to reference Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50:1088–101.CrossRefPubMed Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50:1088–101.CrossRefPubMed
32.
go back to reference Shibata A, Mack TM, Paganini-Hill A, et al. A prospective study of pancreatic cancer in the elderly. Int J Cancer. 1994;58:46–9.CrossRefPubMed Shibata A, Mack TM, Paganini-Hill A, et al. A prospective study of pancreatic cancer in the elderly. Int J Cancer. 1994;58:46–9.CrossRefPubMed
33.
go back to reference Stolzenberg-Solomon RZ, Pietinen P, Barrett MJ, et al. Dietary and other methyl-group availability factors and pancreatic cancer risk in a cohort of male smokers. Am J Epidemiol. 2001;153:680–7.CrossRefPubMed Stolzenberg-Solomon RZ, Pietinen P, Barrett MJ, et al. Dietary and other methyl-group availability factors and pancreatic cancer risk in a cohort of male smokers. Am J Epidemiol. 2001;153:680–7.CrossRefPubMed
34.
go back to reference Heinen MM, Verhage BAJ, Ambergen TAJ, et al. Alcohol consumption and risk of pancreatic cancer in the Netherlands Cohort Study. Am J Epidemiol. 2009;169:1233–42.CrossRefPubMed Heinen MM, Verhage BAJ, Ambergen TAJ, et al. Alcohol consumption and risk of pancreatic cancer in the Netherlands Cohort Study. Am J Epidemiol. 2009;169:1233–42.CrossRefPubMed
35.
go back to reference Jiao L, Silverman DT, Schairer C, et al. Alcohol use and risk of pancreatic cancer: the NIH-AARP Diet and Health Study. Am J Epidemiol. 2009;169:1043–51.CrossRefPubMedPubMedCentral Jiao L, Silverman DT, Schairer C, et al. Alcohol use and risk of pancreatic cancer: the NIH-AARP Diet and Health Study. Am J Epidemiol. 2009;169:1043–51.CrossRefPubMedPubMedCentral
36.
go back to reference Harnack LJ, Anderson KE, Zheng W, et al. Smoking, alcohol, coffee, and tea intake and incidence of cancer of the exocrine pancreas: the Iowa Women’s Health Study. Cancer Epidemiol Biomarkers Prev. 1997;6:1081–6.PubMed Harnack LJ, Anderson KE, Zheng W, et al. Smoking, alcohol, coffee, and tea intake and incidence of cancer of the exocrine pancreas: the Iowa Women’s Health Study. Cancer Epidemiol Biomarkers Prev. 1997;6:1081–6.PubMed
37.
go back to reference Stevens RJ, Roddam AW, Spencer EA, et al. Factors associated with incident and fatal pancreatic cancer in a cohort of middle-aged women. Int J Cancer. 2009;124:2400–5.CrossRefPubMed Stevens RJ, Roddam AW, Spencer EA, et al. Factors associated with incident and fatal pancreatic cancer in a cohort of middle-aged women. Int J Cancer. 2009;124:2400–5.CrossRefPubMed
38.
go back to reference Bandera EV, Freudenheim JL, Marshall JR, et al. Diet and alcohol consumption and lung cancer risk in the New York State Cohort (United States). Cancer Causes Control. 1997;8:828–40.CrossRefPubMed Bandera EV, Freudenheim JL, Marshall JR, et al. Diet and alcohol consumption and lung cancer risk in the New York State Cohort (United States). Cancer Causes Control. 1997;8:828–40.CrossRefPubMed
39.
go back to reference Calton BA, Stolzenberg-Solomon RZ, Moore SC, et al. A prospective study of physical activity and the risk of pancreatic cancer among women (United States). BMC Cancer. 2008;8:63.CrossRefPubMedPubMedCentral Calton BA, Stolzenberg-Solomon RZ, Moore SC, et al. A prospective study of physical activity and the risk of pancreatic cancer among women (United States). BMC Cancer. 2008;8:63.CrossRefPubMedPubMedCentral
40.
go back to reference Chang ET, Canchola AJ, Lee VS, et al. Wine and other alcohol consumption and risk of ovarian cancer in the California Teachers Study cohort. Cancer Causes Control. 2007;18:91–103.CrossRefPubMedPubMedCentral Chang ET, Canchola AJ, Lee VS, et al. Wine and other alcohol consumption and risk of ovarian cancer in the California Teachers Study cohort. Cancer Causes Control. 2007;18:91–103.CrossRefPubMedPubMedCentral
41.
go back to reference Silvera SAN, Rohan TE, Jain M, et al. Glycemic index, glycemic load, and pancreatic cancer risk (Canada). Cancer Causes Control. 2005;16:431–6.CrossRefPubMed Silvera SAN, Rohan TE, Jain M, et al. Glycemic index, glycemic load, and pancreatic cancer risk (Canada). Cancer Causes Control. 2005;16:431–6.CrossRefPubMed
42.
go back to reference Prorok PC, Andriole GL, Bresalier RS, et al. Design of the Prostate, Lung, Colorectal and Ovarian (PLCO) cancer screening trial. Control Clin Trials. 2000;21:273S–309.CrossRefPubMed Prorok PC, Andriole GL, Bresalier RS, et al. Design of the Prostate, Lung, Colorectal and Ovarian (PLCO) cancer screening trial. Control Clin Trials. 2000;21:273S–309.CrossRefPubMed
43.
go back to reference Larsson SC, Håkansson N, Giovannucci E, et al. Folate intake and pancreatic cancer incidence: a prospective study of Swedish women and men. J Natl Cancer Inst. 2006;98:407–13.CrossRefPubMed Larsson SC, Håkansson N, Giovannucci E, et al. Folate intake and pancreatic cancer incidence: a prospective study of Swedish women and men. J Natl Cancer Inst. 2006;98:407–13.CrossRefPubMed
44.
go back to reference Dufour MC, Adamson MD. The epidemiology of alcohol-induced pancreatitis. Pancreas. 2003;27(4):286–90.CrossRefPubMed Dufour MC, Adamson MD. The epidemiology of alcohol-induced pancreatitis. Pancreas. 2003;27(4):286–90.CrossRefPubMed
45.
go back to reference Gukovskaya AS, Mouria M, Gukovsky I, et al. Ethanol metabolism and transcription factor activation in pancreatic acinar cells in rats. Gastroenterology. 2002;122(1):106–18.CrossRefPubMed Gukovskaya AS, Mouria M, Gukovsky I, et al. Ethanol metabolism and transcription factor activation in pancreatic acinar cells in rats. Gastroenterology. 2002;122(1):106–18.CrossRefPubMed
46.
go back to reference Pandol SJ, Periskic S, Gukovsky I, et al. Ethanol diet increases the sensitivity of rats to pancreatitis induced by cholecystokinin octapeptide. Gastroenterology. 1999;117(3):706–16.CrossRefPubMed Pandol SJ, Periskic S, Gukovsky I, et al. Ethanol diet increases the sensitivity of rats to pancreatitis induced by cholecystokinin octapeptide. Gastroenterology. 1999;117(3):706–16.CrossRefPubMed
47.
go back to reference Zheng W, McLaughlin JK, Gridley G, et al. A cohort study of smoking, alcohol consumption, and dietary factors for pancreatic cancer (United States). Cancer Causes Control. 1993;4(5):477–82.CrossRefPubMed Zheng W, McLaughlin JK, Gridley G, et al. A cohort study of smoking, alcohol consumption, and dietary factors for pancreatic cancer (United States). Cancer Causes Control. 1993;4(5):477–82.CrossRefPubMed
48.
go back to reference Devos-Comby L, Lange JE. “My drink is larger than yours”? A literature review of self- defined drink sizes and standard drinks. Curr Drug Abuse Rev. 2008;1(2):162–76.CrossRefPubMed Devos-Comby L, Lange JE. “My drink is larger than yours”? A literature review of self- defined drink sizes and standard drinks. Curr Drug Abuse Rev. 2008;1(2):162–76.CrossRefPubMed
Metadata
Title
Association between alcohol intake and the risk of pancreatic cancer: a dose–response meta-analysis of cohort studies
Authors
Ye-Tao Wang
Ya-Wen Gou
Wen-Wen Jin
Mei Xiao
Hua-Ying Fang
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2016
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-016-2241-1

Other articles of this Issue 1/2016

BMC Cancer 1/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine