Skip to main content
Top
Published in: BMC Cancer 1/2016

Open Access 01-12-2016 | Research article

Genetic and cellular studies highlight that A Disintegrin and Metalloproteinase 19 is a protective biomarker in human prostate cancer

Authors: Gerard Hoyne, Caroline Rudnicka, Qing-Xiang Sang, Mark Roycik, Sarah Howarth, Peter Leedman, Markus Schlaich, Patrick Candy, Vance Matthews

Published in: BMC Cancer | Issue 1/2016

Login to get access

Abstract

Background

Prostate cancer is the second most frequently diagnosed cancer in men worldwide. Current treatments include surgery, androgen ablation and radiation. Introduction of more targeted therapies in prostate cancer, based on a detailed knowledge of the signalling pathways, aims to reduce side effects, leading to better clinical outcomes for the patient. ADAM19 (A Disintegrin And Metalloproteinase 19) is a transmembrane and soluble protein which can regulate cell phenotype through cell adhesion and proteolysis. ADAM19 has been positively associated with numerous diseases, but has not been shown to be a tumor suppressor in the pathogenesis of any human cancers. Our group sought to investigate the role of ADAM19 in human prostate cancer.

Methods

ADAM19 mRNA and protein levels were assessed in well characterised human prostate cancer cohorts. ADAM19 expression was assessed in normal prostate epithelial cells (RWPE-1) and prostate cancer cells (LNCaP, PC3) using western blotting and immunocytochemistry. Proliferation assays were conducted in LNCaP cells in which ADAM19 was over-expressed. In vitro scratch assays were performed in PC3 cells over-expressing ADAM19.

Results

Immunohistochemical studies highlighted that ADAM19 protein levels were elevated in normal prostate tissue compared to prostate cancer biopsies. Results from the clinical cohorts demonstrated that high levels of ADAM19 in microarrays are positively associated with lower stage (p = 0.02591) and reduced relapse (p = 0.00277) of human prostate cancer. In vitro, ADAM19 expression was higher in RWPE-1 cells compared to LNCaP cells. In addition, human ADAM19 over-expression reduced LNCaP cell proliferation and PC3 cell migration.

Conclusions

Taken together, our immunohistochemical and microarray results and cellular studies have shown for the first time that ADAM19 is a protective factor for human prostate cancer. Further, this study suggests that upregulation of ADAM19 expression could be of therapeutic potential in human prostate cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. IJC. 2015;136(5):E359–86. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. IJC. 2015;136(5):E359–86.
2.
go back to reference Feldman BJ, Feldman D. The development of androgen-independent prostate cancer. Nat Rev Cancer. 2001;1(1):34–45.CrossRefPubMed Feldman BJ, Feldman D. The development of androgen-independent prostate cancer. Nat Rev Cancer. 2001;1(1):34–45.CrossRefPubMed
3.
go back to reference Gingrich JR, Barrios RJ, Kattan MW, Nahm HS, Finegold MJ, Greenberg NM. Androgen-independent prostate cancer progression in the TRAMP model. Cancer Res. 1997;57(21):4687–91.PubMed Gingrich JR, Barrios RJ, Kattan MW, Nahm HS, Finegold MJ, Greenberg NM. Androgen-independent prostate cancer progression in the TRAMP model. Cancer Res. 1997;57(21):4687–91.PubMed
4.
go back to reference Higano CS. Side effects of androgen deprivation therapy: monitoring and minimizing toxicity. Urology. 2003;61(2):32–8.CrossRefPubMed Higano CS. Side effects of androgen deprivation therapy: monitoring and minimizing toxicity. Urology. 2003;61(2):32–8.CrossRefPubMed
5.
go back to reference Chari RV. Targeted cancer therapy: conferring specificity to cytotoxic drugs. Acc Chem Res. 2008;41(1):98–107.CrossRefPubMed Chari RV. Targeted cancer therapy: conferring specificity to cytotoxic drugs. Acc Chem Res. 2008;41(1):98–107.CrossRefPubMed
6.
go back to reference Giovannucci E. Insulin-like growth factor-I and binding protein-3 and risk of cancer. Horm Res. 1999;51(3):34–41.CrossRefPubMed Giovannucci E. Insulin-like growth factor-I and binding protein-3 and risk of cancer. Horm Res. 1999;51(3):34–41.CrossRefPubMed
7.
go back to reference Grzmil M, Hemmerlein B, Thelen P, Schweyer S, Burfeind P. Blockade of the type I IGF receptor expression in human prostate cancer cells inhibits proliferation and invasion, up-regulates IGF binding protein-3, and suppresses MMP-2 expression. J Pathol. 2004;202(1):50–9.CrossRefPubMed Grzmil M, Hemmerlein B, Thelen P, Schweyer S, Burfeind P. Blockade of the type I IGF receptor expression in human prostate cancer cells inhibits proliferation and invasion, up-regulates IGF binding protein-3, and suppresses MMP-2 expression. J Pathol. 2004;202(1):50–9.CrossRefPubMed
8.
go back to reference Huovila APJ, Turner AJ, Pelto-Huikko M, Kärkkäinen I, Ortiz RM. Shedding light on ADAM metalloproteinases. Trends Biochem Sci. 2005;30(7):413–22.CrossRefPubMed Huovila APJ, Turner AJ, Pelto-Huikko M, Kärkkäinen I, Ortiz RM. Shedding light on ADAM metalloproteinases. Trends Biochem Sci. 2005;30(7):413–22.CrossRefPubMed
9.
go back to reference Fritzsche FR, Jung M, Tölle A, Wild P, Hartmann A, Wassermann K, et al. ADAM9 expression is a significant and independent prognostic marker of PSA relapse in prostate cancer. Eur Urol. 2008;54(5):1097–108.CrossRefPubMed Fritzsche FR, Jung M, Tölle A, Wild P, Hartmann A, Wassermann K, et al. ADAM9 expression is a significant and independent prognostic marker of PSA relapse in prostate cancer. Eur Urol. 2008;54(5):1097–108.CrossRefPubMed
10.
go back to reference Josson S, Anderson CS, Sung SY, Johnstone PA, Kubo H, Hsieh CL, et al. Inhibition of ADAM9 expression induces epithelial phenotypic alterations and sensitizes human prostate cancer cells to radiation and chemotherapy. Prostate. 2011;71(3):232–40.PubMedCentralCrossRefPubMed Josson S, Anderson CS, Sung SY, Johnstone PA, Kubo H, Hsieh CL, et al. Inhibition of ADAM9 expression induces epithelial phenotypic alterations and sensitizes human prostate cancer cells to radiation and chemotherapy. Prostate. 2011;71(3):232–40.PubMedCentralCrossRefPubMed
11.
go back to reference Arima T, Enokida H, Kubo H, Kagara I, Matsuda R, Toki K, et al. Nuclear translocation of ADAM10 contributes to the pathogenesis and progression of human prostate cancer. Cancer Sci. 2007;98(11):1720–6.CrossRefPubMed Arima T, Enokida H, Kubo H, Kagara I, Matsuda R, Toki K, et al. Nuclear translocation of ADAM10 contributes to the pathogenesis and progression of human prostate cancer. Cancer Sci. 2007;98(11):1720–6.CrossRefPubMed
12.
go back to reference Kuefer R, Day KC, Kleer CG, Sabel MS, Hofer MD, Varambally S, et al. ADAM15 disintegrin is associated with aggressive prostate and breast cancer disease. Neoplasia. 2006;8(4):319–29.PubMedCentralCrossRefPubMed Kuefer R, Day KC, Kleer CG, Sabel MS, Hofer MD, Varambally S, et al. ADAM15 disintegrin is associated with aggressive prostate and breast cancer disease. Neoplasia. 2006;8(4):319–29.PubMedCentralCrossRefPubMed
13.
go back to reference Xiao LJ, Lin P, Lin F, Liu X, Qin W, Zou HF, et al. ADAM17 targets MMP-2 and MMP-9 via EGFR-MEK-ERK pathway activation to promote prostate cancer cell invasion. Int J Oncol. 2012;40(5):1714–24.PubMed Xiao LJ, Lin P, Lin F, Liu X, Qin W, Zou HF, et al. ADAM17 targets MMP-2 and MMP-9 via EGFR-MEK-ERK pathway activation to promote prostate cancer cell invasion. Int J Oncol. 2012;40(5):1714–24.PubMed
14.
go back to reference Qi B, Newcomer RG, Sang QXA. ADAM19/adamalysin 19 structure, function, and role as a putative target in tumors and inflammatory diseases. Curr Pharm Des. 2009;15(20):2336–48.CrossRefPubMed Qi B, Newcomer RG, Sang QXA. ADAM19/adamalysin 19 structure, function, and role as a putative target in tumors and inflammatory diseases. Curr Pharm Des. 2009;15(20):2336–48.CrossRefPubMed
15.
go back to reference Wei P, Zhao Y-G, Zhuang L, Ruben S, Sang Q-XA. Expression and enzymatic activity of human disintegrin and metalloproteinase ADAM19/meltrin beta. Biochem Biophys Res Commun. 2001;280:744–55.CrossRefPubMed Wei P, Zhao Y-G, Zhuang L, Ruben S, Sang Q-XA. Expression and enzymatic activity of human disintegrin and metalloproteinase ADAM19/meltrin beta. Biochem Biophys Res Commun. 2001;280:744–55.CrossRefPubMed
16.
go back to reference Inoue D, Reid M, Lum L, Kratzschmar J, Weskamp G, Myung YM, et al. Cloning and Initial characterization of mouse meltrin b and analysis of the expression of four metalloprotease-disintegrins in bone cells. J Biol Chem. 1998;273(7):4180–7.CrossRefPubMed Inoue D, Reid M, Lum L, Kratzschmar J, Weskamp G, Myung YM, et al. Cloning and Initial characterization of mouse meltrin b and analysis of the expression of four metalloprotease-disintegrins in bone cells. J Biol Chem. 1998;273(7):4180–7.CrossRefPubMed
17.
go back to reference Kurisakia T, Masudaa A, Osumib N, Nabeshimaa Y-i, Fujisawa-Seharaa A. Spatially- and temporally-restricted expression of meltrin a (ADAM12) and b (ADAM19) in mouse embryo. Mech Dev. 1998;73(2):211–5.CrossRef Kurisakia T, Masudaa A, Osumib N, Nabeshimaa Y-i, Fujisawa-Seharaa A. Spatially- and temporally-restricted expression of meltrin a (ADAM12) and b (ADAM19) in mouse embryo. Mech Dev. 1998;73(2):211–5.CrossRef
18.
go back to reference Zhou HM, Weskamp G, Chesneau V, Sahin U, Vortkamp A, Horiuchi K, et al. Essential role for ADAM19 in cardiovascular morphogenesis. Mol Cell Biol. 2004;24(1):96–104.PubMedCentralCrossRefPubMed Zhou HM, Weskamp G, Chesneau V, Sahin U, Vortkamp A, Horiuchi K, et al. Essential role for ADAM19 in cardiovascular morphogenesis. Mol Cell Biol. 2004;24(1):96–104.PubMedCentralCrossRefPubMed
19.
go back to reference LeBrasseur NK, Mizer KC, Parkington JD, Sawyer DB, Fielding RA. The expression of neuregulin and erbB receptors in human skeletal muscle: effects of progressive resistance training. Eur J Appl Physiol. 2005;94(4):371–5.CrossRefPubMed LeBrasseur NK, Mizer KC, Parkington JD, Sawyer DB, Fielding RA. The expression of neuregulin and erbB receptors in human skeletal muscle: effects of progressive resistance training. Eur J Appl Physiol. 2005;94(4):371–5.CrossRefPubMed
20.
go back to reference Huang J, Bridges LC, White JM. Selective modulation of integrin-mediated cell migration by distinct ADAM family members. Mol Biol Cell. 2005;16(10):4982–91.PubMedCentralCrossRefPubMed Huang J, Bridges LC, White JM. Selective modulation of integrin-mediated cell migration by distinct ADAM family members. Mol Biol Cell. 2005;16(10):4982–91.PubMedCentralCrossRefPubMed
21.
go back to reference Garmy-Susini B, Avraamides CJ, Schmid MC, Foubert P, Ellies LG, Barnes L, et al. Integrin α4β1 signaling is required for lymphangiogenesis and tumor metastasis. Cancer Res. 2010;70(8):3042–51.PubMedCentralCrossRefPubMed Garmy-Susini B, Avraamides CJ, Schmid MC, Foubert P, Ellies LG, Barnes L, et al. Integrin α4β1 signaling is required for lymphangiogenesis and tumor metastasis. Cancer Res. 2010;70(8):3042–51.PubMedCentralCrossRefPubMed
22.
go back to reference Zhao Y-G, Wei P, Sang Q-XA. Inhibitory antibodies against endopeptidase activity of human adamalysin 19. Biochem Biophys Res Commun. 2001;289:288–94.CrossRefPubMed Zhao Y-G, Wei P, Sang Q-XA. Inhibitory antibodies against endopeptidase activity of human adamalysin 19. Biochem Biophys Res Commun. 2001;289:288–94.CrossRefPubMed
23.
go back to reference Kang T, Park H, Suh Y, Zhao Y, Tschesche H, Sang Q. Autolytic processing at Glu586-Ser587 within the cysteine-rich domain of human adamalysin 19/disintegrin-metalloproteinase 19 is necessary for its proteolytic activity. J Biol Chem. 2002;277(50):48514–22.CrossRefPubMed Kang T, Park H, Suh Y, Zhao Y, Tschesche H, Sang Q. Autolytic processing at Glu586-Ser587 within the cysteine-rich domain of human adamalysin 19/disintegrin-metalloproteinase 19 is necessary for its proteolytic activity. J Biol Chem. 2002;277(50):48514–22.CrossRefPubMed
24.
go back to reference Althoff K, Reddy P, Voltz N, Rose-John S, Müllberg J. Shedding of interleukin-6 receptor and tumor necrosis factor alpha. Contribution of the stalk sequence to the cleavage pattern of transmembrane proteins. Eur J Biochem. 2000;267(9):2624–31.CrossRefPubMed Althoff K, Reddy P, Voltz N, Rose-John S, Müllberg J. Shedding of interleukin-6 receptor and tumor necrosis factor alpha. Contribution of the stalk sequence to the cleavage pattern of transmembrane proteins. Eur J Biochem. 2000;267(9):2624–31.CrossRefPubMed
25.
go back to reference Liang C, Park AY, Guan J. In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc. 2007;2(2):329–33.CrossRefPubMed Liang C, Park AY, Guan J. In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc. 2007;2(2):329–33.CrossRefPubMed
26.
go back to reference Hikita A, Tanaka N, Yamane S, Ikeda Y, Furukawa H, Tohma S, et al. Involvement of A Disintegrin and Metalloproteinase 10 and 17 in shedding of tumor necrosis factor-α. Biochem Cell Biol. 2009;87(4):581–93.CrossRefPubMed Hikita A, Tanaka N, Yamane S, Ikeda Y, Furukawa H, Tohma S, et al. Involvement of A Disintegrin and Metalloproteinase 10 and 17 in shedding of tumor necrosis factor-α. Biochem Cell Biol. 2009;87(4):581–93.CrossRefPubMed
27.
go back to reference Franzè E, Caruso R, Stolfi C, Sarra M, Cupi M, Ascolani M, et al. High expression of the “A Disintegrin And Metalloprotease” 19 (ADAM19), a sheddase for TNF-α in the mucosa of patients with inflammatory bowel diseases. Inflamm Bowel Dis. 2013;19(3):501–11.CrossRefPubMed Franzè E, Caruso R, Stolfi C, Sarra M, Cupi M, Ascolani M, et al. High expression of the “A Disintegrin And Metalloprotease” 19 (ADAM19), a sheddase for TNF-α in the mucosa of patients with inflammatory bowel diseases. Inflamm Bowel Dis. 2013;19(3):501–11.CrossRefPubMed
28.
go back to reference Chan M, Huang Y, Hartman-Frey C, Kuo C, Deatherage D, Qin H, et al. Aberrant transforming growth factor β1 signaling and SMAD4 nuclear translocation confer epigenetic repression of ADAM19 in ovarian cancer. Neoplasia. 2008;10(9):908.PubMedCentralCrossRefPubMed Chan M, Huang Y, Hartman-Frey C, Kuo C, Deatherage D, Qin H, et al. Aberrant transforming growth factor β1 signaling and SMAD4 nuclear translocation confer epigenetic repression of ADAM19 in ovarian cancer. Neoplasia. 2008;10(9):908.PubMedCentralCrossRefPubMed
29.
go back to reference Melenhorst W, Heuvel M, Timmer A, Huitema S, Bulthuis M, Timens W, et al. ADAM19 expression in human nephrogenesis and renal disease: associations with clinical and structural deterioration. Kidney Int. 2006;70(7):1269–78.CrossRefPubMed Melenhorst W, Heuvel M, Timmer A, Huitema S, Bulthuis M, Timens W, et al. ADAM19 expression in human nephrogenesis and renal disease: associations with clinical and structural deterioration. Kidney Int. 2006;70(7):1269–78.CrossRefPubMed
30.
go back to reference Wildeboer D, Naus S, Sang Q, Bartsch J, Pagenstecher A. Metalloproteinase disintegrins ADAM8 and ADAM19 are highly regulated in human primary brain tumors and their expression levels and activities are associated with invasiveness. J Neuropathol Exp Neurol. 2006;65(5):516–27.CrossRefPubMed Wildeboer D, Naus S, Sang Q, Bartsch J, Pagenstecher A. Metalloproteinase disintegrins ADAM8 and ADAM19 are highly regulated in human primary brain tumors and their expression levels and activities are associated with invasiveness. J Neuropathol Exp Neurol. 2006;65(5):516–27.CrossRefPubMed
31.
go back to reference Shirakabe K, Wakatsuki S, Kurisaki T, Fujisawa-Sehara A. Roles of Meltrin β/ADAM19 in the processing of neuregulin. J Biol Chem. 2001;276(12):9352–8.CrossRefPubMed Shirakabe K, Wakatsuki S, Kurisaki T, Fujisawa-Sehara A. Roles of Meltrin β/ADAM19 in the processing of neuregulin. J Biol Chem. 2001;276(12):9352–8.CrossRefPubMed
32.
go back to reference Chesneau V, Becherer J, Zheng Y, Erdjument-Bromage H, Tempst P, Blobel C. Catalytic properties of ADAM19. J Biol Chem. 2003;278(25):22331–40.CrossRefPubMed Chesneau V, Becherer J, Zheng Y, Erdjument-Bromage H, Tempst P, Blobel C. Catalytic properties of ADAM19. J Biol Chem. 2003;278(25):22331–40.CrossRefPubMed
33.
go back to reference Tanabe C, Hotoda N, Sasagawa N, Futai E, Komano H, Ishiura S. ADAM19 autolysis is activated by LPS and promotes non-classical secretion of cysteine-rich protein 2. Biochem Biophys Res Commun. 2010;396(4):927–32.CrossRefPubMed Tanabe C, Hotoda N, Sasagawa N, Futai E, Komano H, Ishiura S. ADAM19 autolysis is activated by LPS and promotes non-classical secretion of cysteine-rich protein 2. Biochem Biophys Res Commun. 2010;396(4):927–32.CrossRefPubMed
34.
go back to reference Kurohara K, Komatsu K, Kurisaki T, Masuda A, Irie N, Asano M, et al. Essential roles of Meltrin β (ADAM19) in heart development. Dev Biol. 2004;267(1):14–28.CrossRefPubMed Kurohara K, Komatsu K, Kurisaki T, Masuda A, Irie N, Asano M, et al. Essential roles of Meltrin β (ADAM19) in heart development. Dev Biol. 2004;267(1):14–28.CrossRefPubMed
35.
go back to reference Chen C, Huang X, Sheppard D. ADAM33 is not essential for growth and development and does not modulate allergic asthma in mice. Mol Cell Biol. 2006;26(18):6950–6.PubMedCentralCrossRefPubMed Chen C, Huang X, Sheppard D. ADAM33 is not essential for growth and development and does not modulate allergic asthma in mice. Mol Cell Biol. 2006;26(18):6950–6.PubMedCentralCrossRefPubMed
36.
go back to reference Lemmens K, Doggen K, Keulenaer GD. Role of neuregulin-1/ErbB signaling in cardiovascular physiology and disease implications for therapy of heart failure. Circulation. 2007;116(8):954–60.CrossRefPubMed Lemmens K, Doggen K, Keulenaer GD. Role of neuregulin-1/ErbB signaling in cardiovascular physiology and disease implications for therapy of heart failure. Circulation. 2007;116(8):954–60.CrossRefPubMed
37.
go back to reference Grasso A, Wen D, Miller C, Rhim J, Pretlow T, Kung H. ErbB kinases and NDF signaling in human prostate cancer cells. Oncogene. 1997;15(22):2705–16.CrossRefPubMed Grasso A, Wen D, Miller C, Rhim J, Pretlow T, Kung H. ErbB kinases and NDF signaling in human prostate cancer cells. Oncogene. 1997;15(22):2705–16.CrossRefPubMed
38.
go back to reference Wakatsuki S, Kurisaki T, Sehara-Fujisawa A. Lipid rafts identified as locations of ectodomain shedding mediated by Meltrin β/ADAM19. J Neurochem. 2004;89(1):119–23.CrossRefPubMed Wakatsuki S, Kurisaki T, Sehara-Fujisawa A. Lipid rafts identified as locations of ectodomain shedding mediated by Meltrin β/ADAM19. J Neurochem. 2004;89(1):119–23.CrossRefPubMed
39.
go back to reference Chopra D, Menard R, Januszewski J, Mattingly R. TNF-α-mediated apoptosis in normal human prostate epithelial cells and tumor cell lines. Cancer Lett. 2004;203(2):145–54.CrossRefPubMed Chopra D, Menard R, Januszewski J, Mattingly R. TNF-α-mediated apoptosis in normal human prostate epithelial cells and tumor cell lines. Cancer Lett. 2004;203(2):145–54.CrossRefPubMed
40.
go back to reference Rokhlin O, Taghiyev A, Guseva N, Glover R, Chumakov P, Kravchenko J, et al. Androgen regulates apoptosis induced by TNFR family ligands via multiple signaling pathways in LNCaP. Oncogene. 2005;24(45):6773–84.PubMedCentralCrossRefPubMed Rokhlin O, Taghiyev A, Guseva N, Glover R, Chumakov P, Kravchenko J, et al. Androgen regulates apoptosis induced by TNFR family ligands via multiple signaling pathways in LNCaP. Oncogene. 2005;24(45):6773–84.PubMedCentralCrossRefPubMed
41.
go back to reference Cheung A, Ko J, Lung H, Chan K, Stanbridge E, Zabarovsky E, et al. Cysteine-rich intestinal protein 2 (CRIP2) acts as a repressor of NF-κB–mediated proangiogenic cytokine transcription to suppress tumorigenesis and angiogenesis. Proc Natl Acad Sci U S A. 2011;108(20):8390–5.PubMedCentralCrossRefPubMed Cheung A, Ko J, Lung H, Chan K, Stanbridge E, Zabarovsky E, et al. Cysteine-rich intestinal protein 2 (CRIP2) acts as a repressor of NF-κB–mediated proangiogenic cytokine transcription to suppress tumorigenesis and angiogenesis. Proc Natl Acad Sci U S A. 2011;108(20):8390–5.PubMedCentralCrossRefPubMed
42.
go back to reference Lo P, Ko J, Yu Z, Law S, Wang L, Li J, et al. The LIM domain protein, CRIP2, promotes apoptosis in esophageal squamous cell carcinoma. Cancer Lett. 2012;316(1):39–45.CrossRefPubMed Lo P, Ko J, Yu Z, Law S, Wang L, Li J, et al. The LIM domain protein, CRIP2, promotes apoptosis in esophageal squamous cell carcinoma. Cancer Lett. 2012;316(1):39–45.CrossRefPubMed
43.
go back to reference Gallagher MF, Salley Y, Spillane CD, Ffrench B, Baruni SE, Blacksheilds G, et al. Enhanced regulation of cell cycle and suppression of osteoblast differentiation molecular signatures by prostate cancer stem-like holoclones. J Clin Path. 2015;68:692–702.CrossRefPubMed Gallagher MF, Salley Y, Spillane CD, Ffrench B, Baruni SE, Blacksheilds G, et al. Enhanced regulation of cell cycle and suppression of osteoblast differentiation molecular signatures by prostate cancer stem-like holoclones. J Clin Path. 2015;68:692–702.CrossRefPubMed
44.
go back to reference MA MK, Ohta K, Egashira M, Jinno Y, Niikawa N, Matsuda I, et al. Human ESP1/CRP2, a member of the LIM domain protein family: characterization of the cDNA and assignment of the gene locus to chromosome 14q32.3. Genomics. 1996;31(2):167–76.CrossRef MA MK, Ohta K, Egashira M, Jinno Y, Niikawa N, Matsuda I, et al. Human ESP1/CRP2, a member of the LIM domain protein family: characterization of the cDNA and assignment of the gene locus to chromosome 14q32.3. Genomics. 1996;31(2):167–76.CrossRef
45.
go back to reference Shen X, Falzon M. PTH-related protein modulates PC-3 prostate cancer cell adhesion and integrin subunit profile. Mol Cell Endo. 2003;199(1):165–77.CrossRef Shen X, Falzon M. PTH-related protein modulates PC-3 prostate cancer cell adhesion and integrin subunit profile. Mol Cell Endo. 2003;199(1):165–77.CrossRef
46.
go back to reference Angulo JC, Adres G, Ashour N, Sanchez-Chapado M, Lopez JI, Ropero S. Development of castration resistant prostate cancer can be predicted by a DNA hypermethylation profile. J Urol. 2016;195:1–8.CrossRef Angulo JC, Adres G, Ashour N, Sanchez-Chapado M, Lopez JI, Ropero S. Development of castration resistant prostate cancer can be predicted by a DNA hypermethylation profile. J Urol. 2016;195:1–8.CrossRef
47.
go back to reference London S, Gao W, Gharib S, Hancock D, Wilk J, House J, et al. ADAM19 and HTR4 variants and pulmonary function: cohorts for heart and aging research in genomic epidemiology (CHARGE) consortium targeted sequencing study. Circ Cardiovasc Genet. 2014;7(3):350–8.PubMedCentralCrossRefPubMed London S, Gao W, Gharib S, Hancock D, Wilk J, House J, et al. ADAM19 and HTR4 variants and pulmonary function: cohorts for heart and aging research in genomic epidemiology (CHARGE) consortium targeted sequencing study. Circ Cardiovasc Genet. 2014;7(3):350–8.PubMedCentralCrossRefPubMed
Metadata
Title
Genetic and cellular studies highlight that A Disintegrin and Metalloproteinase 19 is a protective biomarker in human prostate cancer
Authors
Gerard Hoyne
Caroline Rudnicka
Qing-Xiang Sang
Mark Roycik
Sarah Howarth
Peter Leedman
Markus Schlaich
Patrick Candy
Vance Matthews
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2016
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-016-2178-4

Other articles of this Issue 1/2016

BMC Cancer 1/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine