Skip to main content
Top
Published in: BMC Cancer 1/2015

Open Access 01-12-2015 | Research article

Role of SMC1A overexpression as a predictor of poor prognosis in late stage colorectal cancer

Authors: Jianwei Wang, Shaojun Yu, Liming Cui, Wenhui Wang, Jun Li, Ke Wang, Xinyuan Lao

Published in: BMC Cancer | Issue 1/2015

Login to get access

Abstract

Background

Structural maintenance of chromosomes 1A (SMC1A) is a member of the cohesion family of proteins that plays crucial roles in cell cycle control. Recent studies have concluded that SMC1A is involved in the pathogenesis of cancer. This study aims to evaluate the functional role of SMC1A in colorectal cancer (CRC) both in vitro and in vivo, and the underlying molecular mechanisms.

Methods

We firstly investigated the expression levels of SMC1A in 427 CRC specimens. Antigen expression was determined by immunohistochemical analysis of SMC1A on tissue microarrays. Stable SMC1A knockdown CRC cell lines were employed. The effects of SMC1A depletion on cell growth in vitro were examined by MTT, colony formation and flow cytometry assays. Tumor forming was evaluated by nude mice model in vivo. To detect the activation of intracellular signaling, pathscan intracellular signaling array and western blotting were performed.

Results

The expression of SMC1A was much stronger in CRC tumor tissues than in adenomas and normal colorectal tissues. High SMC1A expression, indicated as an independent poor prognostic predictor for patients with stage III and stage IV CRC, was correlated with overall survival (OS) (p = 0.008). Functional analysis indicated that SMC1A knockdown by small interfering RNA (siRNA) mediated the significant inhibition of cell proliferation; induced cell cycle arrest and apoptosis via the suppression of CDK4, PCNA and PARP; and blocked the activation of the Erk1/2 and Akt cascades in CRC cells. In addition, SMC1A depletion significantly decreased the growth of subcutaneously inoculated tumors in nude mice.

Conclusions

These results suggest that SMC1A plays an essential role in the development of CRC and may be a predictive factor in patients with CRC. The inhibition of SMC1A may serve as a promising therapeutic strategy for human CRC.
Literature
1.
go back to reference Lee SJ, Moon GS, Jung KH, Kim WJ, Moon SK. c-Jun N-terminal kinase 1 is required for cordycepin-mediated induction of G2/M cell-cycle arrest via p21WAF1 expression in human colon cancer cells. Food Chem Toxicol. 2010;48:277–83.CrossRefPubMed Lee SJ, Moon GS, Jung KH, Kim WJ, Moon SK. c-Jun N-terminal kinase 1 is required for cordycepin-mediated induction of G2/M cell-cycle arrest via p21WAF1 expression in human colon cancer cells. Food Chem Toxicol. 2010;48:277–83.CrossRefPubMed
2.
go back to reference Sun V, Borneman T, Koczywas M, Cristea M, Piper BF, Uman G, et al. Quality of life and barriers to symptom management in colon cancer. Eur J Oncol Nurs. 2012;16:276–80.CrossRefPubMed Sun V, Borneman T, Koczywas M, Cristea M, Piper BF, Uman G, et al. Quality of life and barriers to symptom management in colon cancer. Eur J Oncol Nurs. 2012;16:276–80.CrossRefPubMed
3.
go back to reference Rossi S, Narzo AFD, Mestdagh P, Jacobs B, Bosman FT, Gustavsson B, et al. MicroRNAs in colon cancer: a roadmap for discovery. FEBS Lett. 2012;586:3000–7.CrossRefPubMed Rossi S, Narzo AFD, Mestdagh P, Jacobs B, Bosman FT, Gustavsson B, et al. MicroRNAs in colon cancer: a roadmap for discovery. FEBS Lett. 2012;586:3000–7.CrossRefPubMed
4.
go back to reference Ad G, Chibaudel B, Bachet JB, Larsen AK, Tournigand C, Louvet C, et al. From chemotherapy to targeted therapy in adjuvant treatment for stage III colon cancer. Oncology. 2011;38:521–32. Ad G, Chibaudel B, Bachet JB, Larsen AK, Tournigand C, Louvet C, et al. From chemotherapy to targeted therapy in adjuvant treatment for stage III colon cancer. Oncology. 2011;38:521–32.
5.
go back to reference Xu S, Oshima, T., Imada, T., Masuda, M., Debnath, B., Grande, F., et al. Stabilization of MDA-7/IL-24 for colon cancer therapy. Cancer Lett. 2013; Article in press. Xu S, Oshima, T., Imada, T., Masuda, M., Debnath, B., Grande, F., et al. Stabilization of MDA-7/IL-24 for colon cancer therapy. Cancer Lett. 2013; Article in press.
6.
go back to reference Grady WM. Epigenetic events in the colorectum and in colon cancer. Biochem Soc Trans. 2005;33:684–6.CrossRefPubMed Grady WM. Epigenetic events in the colorectum and in colon cancer. Biochem Soc Trans. 2005;33:684–6.CrossRefPubMed
7.
go back to reference Yavari K, Taghikhani M, Maragheh MG, Namin SAM, Babaei MH. Knockdown of IGF-IR by RNAi inhibits SW480 colon cancer cells growth in vitro. Arch Med Res. 2009;40:235–40.CrossRefPubMed Yavari K, Taghikhani M, Maragheh MG, Namin SAM, Babaei MH. Knockdown of IGF-IR by RNAi inhibits SW480 colon cancer cells growth in vitro. Arch Med Res. 2009;40:235–40.CrossRefPubMed
8.
go back to reference Luo J, Emanuele L, MJ D, Creighton CJ, Schlabach MR, Westbrook TF, et al. A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell. 2009;137:835–48.CrossRefPubMedPubMedCentral Luo J, Emanuele L, MJ D, Creighton CJ, Schlabach MR, Westbrook TF, et al. A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell. 2009;137:835–48.CrossRefPubMedPubMedCentral
9.
go back to reference Losada A, Hirano T. Dynamic molecular linkers of the genome: the first decade of SMC proteins. Genes Dev. 2005;19:1269–87.CrossRefPubMed Losada A, Hirano T. Dynamic molecular linkers of the genome: the first decade of SMC proteins. Genes Dev. 2005;19:1269–87.CrossRefPubMed
12.
go back to reference Kitagawa R, Bakkenist CJ, McKinnon PJ, Kastan MB. Phosphorylation of SMC1 is a critical downstream event in the ATM-NBSI-BRCA1 pathway. Genes Dev. 2004;18:1423.CrossRefPubMedPubMedCentral Kitagawa R, Bakkenist CJ, McKinnon PJ, Kastan MB. Phosphorylation of SMC1 is a critical downstream event in the ATM-NBSI-BRCA1 pathway. Genes Dev. 2004;18:1423.CrossRefPubMedPubMedCentral
13.
14.
go back to reference Narayan G, Bourdon V, Chaganti S, Arias-Pulido H, Nandula SV, Rao PH, et al. Gene dosage alterations revealed by cDNA microarray analysis in cervical cancer: identification of candidate amplified and overexpressed genes. Genes Chromosomes Cancer. 2007;46:373–84.CrossRefPubMed Narayan G, Bourdon V, Chaganti S, Arias-Pulido H, Nandula SV, Rao PH, et al. Gene dosage alterations revealed by cDNA microarray analysis in cervical cancer: identification of candidate amplified and overexpressed genes. Genes Chromosomes Cancer. 2007;46:373–84.CrossRefPubMed
15.
go back to reference Zhang YF, Jiang R, Li JD, Zhang XY, Zhao P, He M, et al. SMC1A knockdown induces growth suppression of human lung adenocarcinoma cells through G1/S cell cycle phase arrest and apoptosis pathways in vitro. Oncology letters. 2013;5:749–55.PubMedPubMedCentral Zhang YF, Jiang R, Li JD, Zhang XY, Zhao P, He M, et al. SMC1A knockdown induces growth suppression of human lung adenocarcinoma cells through G1/S cell cycle phase arrest and apoptosis pathways in vitro. Oncology letters. 2013;5:749–55.PubMedPubMedCentral
16.
go back to reference Yang Y, Zhang Z, Wang R, Ma W, Wei J, Li G. siRNA-mediated knockdown of SMC1A expression suppresses the proliferation of glioblastoma cells. Mol Cell Biochem. 2013;381:209–15.CrossRefPubMed Yang Y, Zhang Z, Wang R, Ma W, Wei J, Li G. siRNA-mediated knockdown of SMC1A expression suppresses the proliferation of glioblastoma cells. Mol Cell Biochem. 2013;381:209–15.CrossRefPubMed
17.
go back to reference Ma Z, Lin M, Li K, Fu Y, Liu X, Yang D, et al. Knocking down SMC1A inhibits growth and leads to G2/M arrest in human glioma cells. Int J Clin Exp Pathol. 2013;6:862–9.PubMedPubMedCentral Ma Z, Lin M, Li K, Fu Y, Liu X, Yang D, et al. Knocking down SMC1A inhibits growth and leads to G2/M arrest in human glioma cells. Int J Clin Exp Pathol. 2013;6:862–9.PubMedPubMedCentral
18.
go back to reference Barber TD, McManus K, Yuen KW, Reis M, Parmigiani G, Shen D, et al. Chromatid cohesion defects may underlie chromosome instability in human colorectal cancers. Proc Natl Acad Sci U S A. 2008;105:3443–8.CrossRefPubMedPubMedCentral Barber TD, McManus K, Yuen KW, Reis M, Parmigiani G, Shen D, et al. Chromatid cohesion defects may underlie chromosome instability in human colorectal cancers. Proc Natl Acad Sci U S A. 2008;105:3443–8.CrossRefPubMedPubMedCentral
19.
go back to reference Wu S, Lao XY, Sun TT, Ren LL, Kong X, Wang JL, et al. Knockdown of ZFX inhibits gastric cancer cell growth in vitro and in vivo via downregulating the ERK-MAPK pathway. Cancer Lett. 2013;337:293–300.CrossRefPubMed Wu S, Lao XY, Sun TT, Ren LL, Kong X, Wang JL, et al. Knockdown of ZFX inhibits gastric cancer cell growth in vitro and in vivo via downregulating the ERK-MAPK pathway. Cancer Lett. 2013;337:293–300.CrossRefPubMed
20.
go back to reference Schuster C, Malinowsky K, Liebmann S, Berg D, Wolff C, Tran K, et al. Antibody validation by combining immunohistochemistry and protein extraction from formalin-fixed paraffin-embedded tissues. Histopathology. 2012;60:E37–50.CrossRefPubMed Schuster C, Malinowsky K, Liebmann S, Berg D, Wolff C, Tran K, et al. Antibody validation by combining immunohistochemistry and protein extraction from formalin-fixed paraffin-embedded tissues. Histopathology. 2012;60:E37–50.CrossRefPubMed
21.
go back to reference Zhou W, Wang Z, Shen N, Pi W, Jiang W, Huang J, et al. Knockdown of ANLN by lentivirus inhibits cell growth and migration in human breast cancer. Mol Cell Biochem. 2015;398:11–9.CrossRefPubMed Zhou W, Wang Z, Shen N, Pi W, Jiang W, Huang J, et al. Knockdown of ANLN by lentivirus inhibits cell growth and migration in human breast cancer. Mol Cell Biochem. 2015;398:11–9.CrossRefPubMed
22.
go back to reference Anuchapreeda S, Limtrakul P, Thanarattanakorn P, Sittipreechacharn S, Chanarat P. Inhibitory effect of curcumin on WT1 gene expression in patient leukemic cells. Arch Pharm Res. 2006;29:80–7.CrossRefPubMed Anuchapreeda S, Limtrakul P, Thanarattanakorn P, Sittipreechacharn S, Chanarat P. Inhibitory effect of curcumin on WT1 gene expression in patient leukemic cells. Arch Pharm Res. 2006;29:80–7.CrossRefPubMed
23.
go back to reference Sun W, Yao L, Jiang B, Guo L, Wang Q. Spindle and kinetochore-associated protein 1 is overexpressed in gastric cancer and modulates cell growth. Mol Cell Biochem. 2014;391:167–74.CrossRefPubMed Sun W, Yao L, Jiang B, Guo L, Wang Q. Spindle and kinetochore-associated protein 1 is overexpressed in gastric cancer and modulates cell growth. Mol Cell Biochem. 2014;391:167–74.CrossRefPubMed
24.
go back to reference Wang D, Sun SQ, Yu YH, Wu WZ, Yang SL, Tan JM. Suppression of SCIN inhibits human prostate cancer cell proliferation and induces G0/G1 phase arrest. Int J Oncol. 2014;44:161–6.PubMed Wang D, Sun SQ, Yu YH, Wu WZ, Yang SL, Tan JM. Suppression of SCIN inhibits human prostate cancer cell proliferation and induces G0/G1 phase arrest. Int J Oncol. 2014;44:161–6.PubMed
25.
go back to reference Kannan A, Krishnan A, Ali M, Subramaniam S, Halagowder D, Sivasithamparam ND. Caveolin-1 promotes gastric cancer progression by up-regulating epithelial to mesenchymal transition by crosstalk of signalling mechanisms under hypoxic condition. Eur J Cancer. 2014;50:204–15.CrossRefPubMed Kannan A, Krishnan A, Ali M, Subramaniam S, Halagowder D, Sivasithamparam ND. Caveolin-1 promotes gastric cancer progression by up-regulating epithelial to mesenchymal transition by crosstalk of signalling mechanisms under hypoxic condition. Eur J Cancer. 2014;50:204–15.CrossRefPubMed
26.
go back to reference Nasmyth KaH CH. Cohesin: its roles and mechanisms. Annu Rev Genet. 2009;43:525–58.CrossRef Nasmyth KaH CH. Cohesin: its roles and mechanisms. Annu Rev Genet. 2009;43:525–58.CrossRef
27.
go back to reference Zhang M, Zhou Y, Xie C, Zhou F, Chen Y, Han G, et al. STAT6 specific shRNA inhibits proliferation and induces apoptosis in colon cancer HT-29 cells. Cancer Lett. 2006;243:38–46.CrossRefPubMed Zhang M, Zhou Y, Xie C, Zhou F, Chen Y, Han G, et al. STAT6 specific shRNA inhibits proliferation and induces apoptosis in colon cancer HT-29 cells. Cancer Lett. 2006;243:38–46.CrossRefPubMed
28.
go back to reference Sancak Y, Thoreen CC, Peterson TR, Lindquist RA, Kang SA, Spooner E, et al. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell. 2007;25:903–15.CrossRefPubMed Sancak Y, Thoreen CC, Peterson TR, Lindquist RA, Kang SA, Spooner E, et al. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell. 2007;25:903–15.CrossRefPubMed
29.
go back to reference Thedieck K, Polak P, Kim ML, Molle KD, Cohen A, Jeno P, et al. PRAS40 and PRR5-like protein are new mTOR interactors that regulate apoptosis. PLoS One. 2007;2:e1217.CrossRefPubMedPubMedCentral Thedieck K, Polak P, Kim ML, Molle KD, Cohen A, Jeno P, et al. PRAS40 and PRR5-like protein are new mTOR interactors that regulate apoptosis. PLoS One. 2007;2:e1217.CrossRefPubMedPubMedCentral
30.
go back to reference Yang X, Qiao D, Meyer K, Friedl A. Signal transducers and activators of transcription mediate fibroblast growth factor-induced vascular endothelial morphogenesis. Cancer Res. 2009;69:1668–77.CrossRefPubMedPubMedCentral Yang X, Qiao D, Meyer K, Friedl A. Signal transducers and activators of transcription mediate fibroblast growth factor-induced vascular endothelial morphogenesis. Cancer Res. 2009;69:1668–77.CrossRefPubMedPubMedCentral
32.
go back to reference Fazekas D, Koltai M, Turei D, Modos D, Palfy M, Dul Z, et al. SignaLink 2-a signaling pathway resource with multi-layered regulatory networks. BMC Syst Biol. 2013;7:7.CrossRefPubMedPubMedCentral Fazekas D, Koltai M, Turei D, Modos D, Palfy M, Dul Z, et al. SignaLink 2-a signaling pathway resource with multi-layered regulatory networks. BMC Syst Biol. 2013;7:7.CrossRefPubMedPubMedCentral
33.
go back to reference Korcsmaros T, Farkas IJ, Szalay MS, Rovo P, Fazekas D, Spiro Z, et al. Uniformly curated signaling pathways reveal tissue-specific cross-talks and support drug target discovery. Bioinformatics. 2010;26:2042–50.CrossRefPubMed Korcsmaros T, Farkas IJ, Szalay MS, Rovo P, Fazekas D, Spiro Z, et al. Uniformly curated signaling pathways reveal tissue-specific cross-talks and support drug target discovery. Bioinformatics. 2010;26:2042–50.CrossRefPubMed
34.
go back to reference Wang W, Chen X, Li T, Li Y, Wang R, He D, et al. Screening a phage display library for a novel FGF8b-binding peptide with anti-tumor effect on prostate cancer. Exp Cell Res. 2013;319:1156–64.CrossRefPubMed Wang W, Chen X, Li T, Li Y, Wang R, He D, et al. Screening a phage display library for a novel FGF8b-binding peptide with anti-tumor effect on prostate cancer. Exp Cell Res. 2013;319:1156–64.CrossRefPubMed
35.
go back to reference Koundrioukoff S, Jonsson ZO, Hasan S, de Jong RN, van der Vliet PC, Hottiger MO, et al. A direct interaction between proliferating cell nuclear antigen (PCNA) and Cdk2 targets PCNA-interacting proteins for phosphorylation. J Biol Chem. 2000;275:22882–7.CrossRefPubMed Koundrioukoff S, Jonsson ZO, Hasan S, de Jong RN, van der Vliet PC, Hottiger MO, et al. A direct interaction between proliferating cell nuclear antigen (PCNA) and Cdk2 targets PCNA-interacting proteins for phosphorylation. J Biol Chem. 2000;275:22882–7.CrossRefPubMed
36.
go back to reference Xiong Y, Zhang H, Beach D. D type cyclins associate with multiple protein kinases and the DNA replication and repair factor PCNA. Cell. 1992;71:505–14.CrossRefPubMed Xiong Y, Zhang H, Beach D. D type cyclins associate with multiple protein kinases and the DNA replication and repair factor PCNA. Cell. 1992;71:505–14.CrossRefPubMed
37.
go back to reference Decker P, Muller S. Modulating poly (ADP-ribose) polymerase activity: potential for the prevention and therapy of pathogenic situations involving DNA damage and oxidative stress. Curr Pharm Biotechnol. 2002;3:275–83.CrossRefPubMed Decker P, Muller S. Modulating poly (ADP-ribose) polymerase activity: potential for the prevention and therapy of pathogenic situations involving DNA damage and oxidative stress. Curr Pharm Biotechnol. 2002;3:275–83.CrossRefPubMed
38.
go back to reference Bressenot A, Marchal S, Bezdetnaya L, Garrier J, Guillemin F, Plenat F. Assessment of apoptosis by immunohistochemistry to active caspase-3, active caspase-7, or cleaved PARP in monolayer cells and spheroid and subcutaneous xenografts of human carcinoma. J Histochem Cytochem official. 2009;57:289–300.CrossRef Bressenot A, Marchal S, Bezdetnaya L, Garrier J, Guillemin F, Plenat F. Assessment of apoptosis by immunohistochemistry to active caspase-3, active caspase-7, or cleaved PARP in monolayer cells and spheroid and subcutaneous xenografts of human carcinoma. J Histochem Cytochem official. 2009;57:289–300.CrossRef
Metadata
Title
Role of SMC1A overexpression as a predictor of poor prognosis in late stage colorectal cancer
Authors
Jianwei Wang
Shaojun Yu
Liming Cui
Wenhui Wang
Jun Li
Ke Wang
Xinyuan Lao
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2015
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-015-1085-4

Other articles of this Issue 1/2015

BMC Cancer 1/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine