Skip to main content
Top
Published in: BMC Cancer 1/2015

Open Access 01-12-2015 | Research article

The differential anti-tumour effects of zoledronic acid in breast cancer – evidence for a role of the activin signaling pathway

Authors: Caroline Wilson, Penelope Ottewell, Robert E Coleman, Ingunn Holen

Published in: BMC Cancer | Issue 1/2015

Login to get access

Abstract

Background

Neo-adjuvant breast cancer clinical trials of zoledronic acid (ZOL) have shown that patients with oestrogen negative (ER-ve) tumours have improved disease outcomes. We investigated the molecular mechanism behind this differential anti-tumour effect according to ER status, hypothesising it may in part be mediated via the activin signaling pathway.

Methods

The effects of activin A, its inhibitor follistatin and zoledronic acid on proliferation of breast cancer cells was evaluated using either an MTS proliferation assay or trypan blue. Secretion of activin A and follistatin in conditioned medium (CM) from MDA-MB-231, MDA-MB-436, MCF7 and T47D cell lines were measured using specific ELISAs. The effects of ZOL on phosphorylation domains of Smad2 (pSmad2c + pSmad2L) were evaluated using immunofluorescence. Changes seen in vitro were confirmed in a ZOL treated subcutaneous ER-ve MDA-MB-436 xenograft model.

Results

Activin A inhibits proliferation of both ER-ve and oestrogen positive (ER + ve) breast cancer cells, an effect impaired by follistatin. ZOL significantly inhibits proliferation and the secretion of follistatin from ER-ve cells only, which increases the biological activity of the canonical activin A pathway by significantly increasing intracellular pSmad2c and decreasing nuclear accumulation of pSmad2L. In vivo, ZOL significantly decreases follistatin and pSmad2L expression in ER-ve subcutaneous xenografts compared to saline treated control animals.

Conclusions

This is the first report showing a differential effect of ZOL, according to ER status, on the activin pathway and its inhibitors in vitro and in vivo. These data suggest a potential molecular mechanism contributing to the differential anti-tumour effects reported from clinical trials and requires further evaluation in clinical samples.
Literature
1.
go back to reference Coleman RE, Winter MC, Cameron D, Bell R, Dodwell D, Keane M, et al. The effects of adding zoledronic acid to neoadjuvant chemotherapy on tumour response: exploratory evidence for direct anti-tumour activity in breast cancer. Br J Cancer. 2010;102(7):1099–105. doi:10.1038/sj.bjc.6605604.CrossRefPubMedPubMedCentral Coleman RE, Winter MC, Cameron D, Bell R, Dodwell D, Keane M, et al. The effects of adding zoledronic acid to neoadjuvant chemotherapy on tumour response: exploratory evidence for direct anti-tumour activity in breast cancer. Br J Cancer. 2010;102(7):1099–105. doi:10.1038/sj.bjc.6605604.CrossRefPubMedPubMedCentral
2.
go back to reference Aft RL, Naughton M, Trinkaus K, Weilbaecher K. Effect of (Neo)adjuvant zoledronic acid on disease-free and overall survival in clinical stage II/III breast cancer. Br J Cancer. 2012;107(1):7–11. doi:10.1038/bjc.2012.210.CrossRefPubMedPubMedCentral Aft RL, Naughton M, Trinkaus K, Weilbaecher K. Effect of (Neo)adjuvant zoledronic acid on disease-free and overall survival in clinical stage II/III breast cancer. Br J Cancer. 2012;107(1):7–11. doi:10.1038/bjc.2012.210.CrossRefPubMedPubMedCentral
3.
go back to reference Horiguchi JHY, Miura D. A randomized controlled trial comparing zoledronic acid plus chemotherapy with chemotherapy alone as a neoadjuvant treatment in patients with HER2-negative primary breast cancer. J Clin Oncol. 2013;31:2013. suppl; abstr 1029. Horiguchi JHY, Miura D. A randomized controlled trial comparing zoledronic acid plus chemotherapy with chemotherapy alone as a neoadjuvant treatment in patients with HER2-negative primary breast cancer. J Clin Oncol. 2013;31:2013. suppl; abstr 1029.
4.
go back to reference Rachner TD, Singh SK, Schoppet M, Benad P, Bornhauser M, Ellenrieder V, et al. Zoledronic acid induces apoptosis and changes the TRAIL/OPG ratio in breast cancer cells. Cancer Lett. 2010;287(1):109–16. doi:10.1016/j.canlet.2009.06.003.CrossRefPubMed Rachner TD, Singh SK, Schoppet M, Benad P, Bornhauser M, Ellenrieder V, et al. Zoledronic acid induces apoptosis and changes the TRAIL/OPG ratio in breast cancer cells. Cancer Lett. 2010;287(1):109–16. doi:10.1016/j.canlet.2009.06.003.CrossRefPubMed
5.
go back to reference Gnant M, Clezardin P. Direct and indirect anticancer activity of bisphosphonates: a brief review of published literature. Cancer Treat Rev. 2012;38(5):407–15. doi:10.1016/j.ctrv.2011.09.003.CrossRefPubMed Gnant M, Clezardin P. Direct and indirect anticancer activity of bisphosphonates: a brief review of published literature. Cancer Treat Rev. 2012;38(5):407–15. doi:10.1016/j.ctrv.2011.09.003.CrossRefPubMed
6.
go back to reference Winter MC, Wilson C, Syddall SP, Cross S, Evans A, Ingram C, et al. Neoadjuvant chemotherapy with or without zoledronic acid in early breast cancer–a randomized biomarker pilot study. Clin Cancer Res. 2013;19(10):2755–65. doi:10.1158/1078-0432.CCR-12-3235.CrossRefPubMed Winter MC, Wilson C, Syddall SP, Cross S, Evans A, Ingram C, et al. Neoadjuvant chemotherapy with or without zoledronic acid in early breast cancer–a randomized biomarker pilot study. Clin Cancer Res. 2013;19(10):2755–65. doi:10.1158/1078-0432.CCR-12-3235.CrossRefPubMed
7.
go back to reference Wilson CWM, Coleman RE, Ottewell P, Evans AC, Holen I. Differential anti-tumour effects of zoledronic acid in breast cancer according to ER status and levels of female hormones. Miami, Florida: Cancer and Bone Society and the International Bone and Mineral Society; 2013. Wilson CWM, Coleman RE, Ottewell P, Evans AC, Holen I. Differential anti-tumour effects of zoledronic acid in breast cancer according to ER status and levels of female hormones. Miami, Florida: Cancer and Bone Society and the International Bone and Mineral Society; 2013.
8.
go back to reference Bloise E, Couto HL, Massai L, Ciarmela P, Mencarelli M, Borges LE, et al. Differential expression of follistatin and FLRG in human breast proliferative disorders. BMC Cancer. 2009;9:320. doi:10.1186/1471-2407-9-320.CrossRefPubMedPubMedCentral Bloise E, Couto HL, Massai L, Ciarmela P, Mencarelli M, Borges LE, et al. Differential expression of follistatin and FLRG in human breast proliferative disorders. BMC Cancer. 2009;9:320. doi:10.1186/1471-2407-9-320.CrossRefPubMedPubMedCentral
10.
go back to reference Matsuzaki K. Smad phosphoisoform signaling specificity: the right place at the right time. Carcinogenesis. 2011;32(11):1578–88. doi:10.1093/carcin/bgr172.CrossRefPubMedPubMedCentral Matsuzaki K. Smad phosphoisoform signaling specificity: the right place at the right time. Carcinogenesis. 2011;32(11):1578–88. doi:10.1093/carcin/bgr172.CrossRefPubMedPubMedCentral
11.
go back to reference Kalkhoven E, Roelen BA, de Winter JP, Mummery CL, Van den Eijnden-Van Raaij AJ, Van der Saag PT, et al. Resistance to transforming growth factor beta and activin due to reduced receptor expression in human breast tumor cell lines. Cell Growth Differ. 1995;6(9):1151–61.PubMed Kalkhoven E, Roelen BA, de Winter JP, Mummery CL, Van den Eijnden-Van Raaij AJ, Van der Saag PT, et al. Resistance to transforming growth factor beta and activin due to reduced receptor expression in human breast tumor cell lines. Cell Growth Differ. 1995;6(9):1151–61.PubMed
12.
go back to reference Razanajaona D, Joguet S, Ay AS, Treilleux I, Goddard-Leon S, Bartholin L, et al. Silencing of FLRG, an antagonist of activin, inhibits human breast tumor cell growth. Cancer Res. 2007;67(15):7223–9. doi:10.1158/0008-5472.CAN-07-0805.CrossRefPubMed Razanajaona D, Joguet S, Ay AS, Treilleux I, Goddard-Leon S, Bartholin L, et al. Silencing of FLRG, an antagonist of activin, inhibits human breast tumor cell growth. Cancer Res. 2007;67(15):7223–9. doi:10.1158/0008-5472.CAN-07-0805.CrossRefPubMed
13.
go back to reference Ottewell PD, Monkkonen H, Jones M, Lefley DV, Coleman RE, Holen I. Antitumor effects of doxorubicin followed by zoledronic acid in a mouse model of breast cancer. J Natl Cancer Inst. 2008;100(16):1167–78. doi:10.1093/jnci/djn240.CrossRefPubMed Ottewell PD, Monkkonen H, Jones M, Lefley DV, Coleman RE, Holen I. Antitumor effects of doxorubicin followed by zoledronic acid in a mouse model of breast cancer. J Natl Cancer Inst. 2008;100(16):1167–78. doi:10.1093/jnci/djn240.CrossRefPubMed
14.
go back to reference Burdette JE, Jeruss JS, Kurley SJ, Lee EJ, Woodruff TK. Activin A mediates growth inhibition and cell cycle arrest through Smads in human breast cancer cells. Cancer Res. 2005;65(17):7968–75. doi:10.1158/0008-5472.CAN-04-3553.PubMed Burdette JE, Jeruss JS, Kurley SJ, Lee EJ, Woodruff TK. Activin A mediates growth inhibition and cell cycle arrest through Smads in human breast cancer cells. Cancer Res. 2005;65(17):7968–75. doi:10.1158/0008-5472.CAN-04-3553.PubMed
15.
go back to reference Reis FM, Cobellis L, Tameirao LC, Anania G, Luisi S, Silva IS, et al. Serum and tissue expression of activin a in postmenopausal women with breast cancer. J Clin Endocrinol Metab. 2002;87(5):2277–82.CrossRefPubMed Reis FM, Cobellis L, Tameirao LC, Anania G, Luisi S, Silva IS, et al. Serum and tissue expression of activin a in postmenopausal women with breast cancer. J Clin Endocrinol Metab. 2002;87(5):2277–82.CrossRefPubMed
16.
go back to reference Reis FM, Luisi S, Carneiro MM, Cobellis L, Frederico M, Camargos AF, et al. Activin, inhibin and the human breast. Mol Cell Endocrinol. 2004;225(1–2):77–82. doi:10.1016/j.mce.2004.02.016.CrossRefPubMed Reis FM, Luisi S, Carneiro MM, Cobellis L, Frederico M, Camargos AF, et al. Activin, inhibin and the human breast. Mol Cell Endocrinol. 2004;225(1–2):77–82. doi:10.1016/j.mce.2004.02.016.CrossRefPubMed
17.
go back to reference Harrison CA, Chan KL, Robertson DM. Activin-A binds follistatin and type II receptors through overlapping binding sites: generation of mutants with isolated binding activities. Endocrinology. 2006;147(6):2744–53. doi:10.1210/en.2006-0131.CrossRefPubMed Harrison CA, Chan KL, Robertson DM. Activin-A binds follistatin and type II receptors through overlapping binding sites: generation of mutants with isolated binding activities. Endocrinology. 2006;147(6):2744–53. doi:10.1210/en.2006-0131.CrossRefPubMed
18.
go back to reference Luckman SP, Coxon FP, Ebetino FH, Russell RG, Rogers MJ. Heterocycle-containing bisphosphonates cause apoptosis and inhibit bone resorption by preventing protein prenylation: evidence from structure-activity relationships in J774 macrophages. J Bone Miner Res. 1998;13(11):1668–78. doi:10.1359/jbmr.1998.13.11.1668.CrossRefPubMed Luckman SP, Coxon FP, Ebetino FH, Russell RG, Rogers MJ. Heterocycle-containing bisphosphonates cause apoptosis and inhibit bone resorption by preventing protein prenylation: evidence from structure-activity relationships in J774 macrophages. J Bone Miner Res. 1998;13(11):1668–78. doi:10.1359/jbmr.1998.13.11.1668.CrossRefPubMed
19.
go back to reference Xie W, Mertens JC, Reiss DJ, Rimm DL, Camp RL, Haffty BG, et al. Alterations of Smad signaling in human breast carcinoma are associated with poor outcome: a tissue microarray study. Cancer Res. 2002;62(2):497–505.PubMed Xie W, Mertens JC, Reiss DJ, Rimm DL, Camp RL, Haffty BG, et al. Alterations of Smad signaling in human breast carcinoma are associated with poor outcome: a tissue microarray study. Cancer Res. 2002;62(2):497–505.PubMed
20.
go back to reference Horiguchi J, Hasegawa Y, Miura D, Ishikawa T, Hayashi M, Takao S, et al. A randomized controlled trial comparing zoledronic acid plus chemotherapy with chemotherapy alone as a neoadjuvant treatment in patients with HER2-negative primary breast cancer. J Clin Oncol. 2013;31:2013. suppl; abstr 1029. Horiguchi J, Hasegawa Y, Miura D, Ishikawa T, Hayashi M, Takao S, et al. A randomized controlled trial comparing zoledronic acid plus chemotherapy with chemotherapy alone as a neoadjuvant treatment in patients with HER2-negative primary breast cancer. J Clin Oncol. 2013;31:2013. suppl; abstr 1029.
21.
go back to reference Cocolakis E, Lemay S, Ali S, Lebrun J. The p38 MAPK pathway is required for cell growth inhibition of human breast cancer cells in response to activin. J Biol Chem. 2001;276(21):18430–6. doi:10.1074/jbc.M010768200.CrossRefPubMed Cocolakis E, Lemay S, Ali S, Lebrun J. The p38 MAPK pathway is required for cell growth inhibition of human breast cancer cells in response to activin. J Biol Chem. 2001;276(21):18430–6. doi:10.1074/jbc.M010768200.CrossRefPubMed
22.
go back to reference Jeruss JS, Sturgis CD, Rademaker AW, Woodruff T. Down-regulation of activin, activin receptors, and Smads in high-grade breast cancer. Cancer Res. 2003;63(13):3783–90.PubMed Jeruss JS, Sturgis CD, Rademaker AW, Woodruff T. Down-regulation of activin, activin receptors, and Smads in high-grade breast cancer. Cancer Res. 2003;63(13):3783–90.PubMed
23.
go back to reference Monkkonen H, Kuokkanen J, Holen I, Evans A, Lefley D, Jauhianen M, et al. Bisphosphonate-induced ATP analog formation and its effect on inhibition of cancer cell growth. Anticancer Drugs. 2008;19(4):391–9. doi:10.1097/CAD.0b013e3282f632bf.CrossRefPubMed Monkkonen H, Kuokkanen J, Holen I, Evans A, Lefley D, Jauhianen M, et al. Bisphosphonate-induced ATP analog formation and its effect on inhibition of cancer cell growth. Anticancer Drugs. 2008;19(4):391–9. doi:10.1097/CAD.0b013e3282f632bf.CrossRefPubMed
24.
go back to reference Benzaid I, Monkkonen H, Stresing V, Bonnelye E, Green J, Monkkonen J, et al. High phosphoantigen levels in bisphosphonate-treated human breast tumors promote Vgamma9Vdelta2 T-cell chemotaxis and cytotoxicity in vivo. Cancer Res. 2011;71(13):4562–72. doi:10.1158/0008-5472.CAN-10-3862.CrossRefPubMed Benzaid I, Monkkonen H, Stresing V, Bonnelye E, Green J, Monkkonen J, et al. High phosphoantigen levels in bisphosphonate-treated human breast tumors promote Vgamma9Vdelta2 T-cell chemotaxis and cytotoxicity in vivo. Cancer Res. 2011;71(13):4562–72. doi:10.1158/0008-5472.CAN-10-3862.CrossRefPubMed
25.
go back to reference Petersen M, Pardali E, van der Horst G, Cheung H, Van den Hoogen C, Van der Pluijm G, et al. Smad2 and Smad3 have opposing roles in breast cancer bone metastasis by differentially affecting tumor angiogenesis. Oncogene. 2010;29(9):1351–61. doi:10.1038/onc.2009.426.CrossRefPubMed Petersen M, Pardali E, van der Horst G, Cheung H, Van den Hoogen C, Van der Pluijm G, et al. Smad2 and Smad3 have opposing roles in breast cancer bone metastasis by differentially affecting tumor angiogenesis. Oncogene. 2010;29(9):1351–61. doi:10.1038/onc.2009.426.CrossRefPubMed
26.
go back to reference Choi SC, Kim GH, Lee SJ, Park E, Yeo CY, Han JK. Regulation of activin/nodal signaling by Rap2-directed receptor trafficking. Dev Cell. 2008;15(1):49–61. doi:10.1016/j.devcel.2008.05.004.CrossRefPubMed Choi SC, Kim GH, Lee SJ, Park E, Yeo CY, Han JK. Regulation of activin/nodal signaling by Rap2-directed receptor trafficking. Dev Cell. 2008;15(1):49–61. doi:10.1016/j.devcel.2008.05.004.CrossRefPubMed
27.
go back to reference Ungefroren H, Groth S, Sebens S, Lehnert H, Gieseler F, Fandrich F. Differential roles of Smad2 and Smad3 in the regulation of TGF-beta1-mediated growth inhibition and cell migration in pancreatic ductal adenocarcinoma cells: control by Rac1. Mol Cancer. 2011;10:67. doi:10.1186/1476-4598-10-67.CrossRefPubMedPubMedCentral Ungefroren H, Groth S, Sebens S, Lehnert H, Gieseler F, Fandrich F. Differential roles of Smad2 and Smad3 in the regulation of TGF-beta1-mediated growth inhibition and cell migration in pancreatic ductal adenocarcinoma cells: control by Rac1. Mol Cancer. 2011;10:67. doi:10.1186/1476-4598-10-67.CrossRefPubMedPubMedCentral
28.
go back to reference Ibrahim T, Mercatali L, Sacanna E, Tesei A, Carloni S, Ulivi P, et al. Inhibition of breast cancer cell proliferation in repeated and non-repeated treatment with zoledronic acid. Cancer Cell Int. 2012;12(1):48. doi:10.1186/1475-2867-12-48.CrossRefPubMedPubMedCentral Ibrahim T, Mercatali L, Sacanna E, Tesei A, Carloni S, Ulivi P, et al. Inhibition of breast cancer cell proliferation in repeated and non-repeated treatment with zoledronic acid. Cancer Cell Int. 2012;12(1):48. doi:10.1186/1475-2867-12-48.CrossRefPubMedPubMedCentral
Metadata
Title
The differential anti-tumour effects of zoledronic acid in breast cancer – evidence for a role of the activin signaling pathway
Authors
Caroline Wilson
Penelope Ottewell
Robert E Coleman
Ingunn Holen
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2015
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-015-1066-7

Other articles of this Issue 1/2015

BMC Cancer 1/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine