Skip to main content
Top
Published in: BMC Cancer 1/2015

Open Access 01-12-2015 | Technical advance

Microfluidic model of ductal carcinoma in situ with 3D, organotypic structure

Authors: Lauren L Bischel, David J Beebe, Kyung E Sung

Published in: BMC Cancer | Issue 1/2015

Login to get access

Abstract

Background

Ductal carcinoma in situ (DCIS) is a non-invasive form of breast cancer that is thought to be a precursor to most invasive and metastatic breast cancers. Understanding the mechanisms regulating the invasive transition of DCIS is critical in order to better understand how some types of DCIS become invasive. While significant insights have been gained using traditional in vivo and in vitro models, existing models do not adequately recapitulate key structure and functions of human DCIS well. In addition, existing models are time-consuming and costly, limiting their use in routine screens. Here, we present a microscale DCIS model that recapitulates key structures and functions of human DCIS, while enhancing the throughput capability of the system to simultaneously screen numerous molecules and drugs.

Methods

Our microscale DCIS model is prepared in two steps. First, viscous finger patterning is used to generate mammary epithelial cell-lined lumens through extracellular matrix hydrogels. Next, DCIS cells are added to fill the mammary ducts to create a DCIS-like structure. For coculture experiments, human mammary fibroblasts (HMF) are added to the two side channels connected to the center channel containing DCIS. To validate the invasive transition of the DCIS model, the invasion of cancer cells and the loss of cell-cell junctions are then examined. A student t-test is conducted for statistical analysis.

Results

We demonstrate that our DCIS model faithfully recapitulates key structures and functions of human mammary DCIS and can be employed to study the mechanisms involved in the invasive progression of DCIS. First, the formation of cell-cell junctions and cell polarity in the normal mammary duct, and the structure of the DCIS model are characterized. Second, coculture with HMF is shown to induce the invasion of DCIS. Third, multiple endpoint analyses are demonstrated to validate the invasion.

Conclusions

We have developed and characterized a novel in vitro model of normal and DCIS-inflicted mammary ducts with 3D lumen structures. These models will enable researchers to investigate the role of microenvironmental factors on the invasion of DCIS in more in vivo-like conditions.
Literature
1.
go back to reference Burstein HJ, Polyak K, Wong JS, Lester SC, Kaelin CM. Ductal carcinoma in situ of the breast. N Engl J Med. 2004;350(14):1430–41.CrossRefPubMed Burstein HJ, Polyak K, Wong JS, Lester SC, Kaelin CM. Ductal carcinoma in situ of the breast. N Engl J Med. 2004;350(14):1430–41.CrossRefPubMed
2.
go back to reference Espina V, Liotta LA. What is the malignant nature of human ductal carcinoma in situ? Nat Rev Cancer. 2011;11(1):68–75.CrossRefPubMed Espina V, Liotta LA. What is the malignant nature of human ductal carcinoma in situ? Nat Rev Cancer. 2011;11(1):68–75.CrossRefPubMed
4.
go back to reference Espina V, Mariani BD, Gallagher RI, Tran K, Banks S, Wiedemann J, et al. Malignant precursor cells Pre-exist in human breast DCIS and require autophagy for survival. PLoS One. 2010;5(4):e10240.CrossRefPubMedPubMedCentral Espina V, Mariani BD, Gallagher RI, Tran K, Banks S, Wiedemann J, et al. Malignant precursor cells Pre-exist in human breast DCIS and require autophagy for survival. PLoS One. 2010;5(4):e10240.CrossRefPubMedPubMedCentral
5.
go back to reference Kumar AS, Bhatia V, Henderson IC. Overdiagnosis and overtreatment of breast cancer: rates of ductal carcinoma in situ: a US perspective. Breast Cancer Res BCR. 2005;7(6):271–5.CrossRefPubMed Kumar AS, Bhatia V, Henderson IC. Overdiagnosis and overtreatment of breast cancer: rates of ductal carcinoma in situ: a US perspective. Breast Cancer Res BCR. 2005;7(6):271–5.CrossRefPubMed
6.
go back to reference Baum M. Harms from breast cancer screening outweigh benefits if death caused by treatment is included. BMJ. 2013;346:f385.CrossRefPubMed Baum M. Harms from breast cancer screening outweigh benefits if death caused by treatment is included. BMJ. 2013;346:f385.CrossRefPubMed
7.
go back to reference Medina D, Edwards DG, Kittrell F, Lee S, Allred DC. Intra-mammary ductal transplantation: a tool to study premalignant progression. J Mammary Gland Biol Neoplasia. 2012;17(2):131–3.CrossRefPubMed Medina D, Edwards DG, Kittrell F, Lee S, Allred DC. Intra-mammary ductal transplantation: a tool to study premalignant progression. J Mammary Gland Biol Neoplasia. 2012;17(2):131–3.CrossRefPubMed
8.
go back to reference Damonte P, Hodgson JG, Chen JQ, Young LJT, Cardiff RD, Borowsky AD. Mammary carcinoma behavior is programmed in the precancer stem cell. Breast Cancer Res BCR. 2008;10(3):R50.CrossRefPubMed Damonte P, Hodgson JG, Chen JQ, Young LJT, Cardiff RD, Borowsky AD. Mammary carcinoma behavior is programmed in the precancer stem cell. Breast Cancer Res BCR. 2008;10(3):R50.CrossRefPubMed
9.
go back to reference Behbod F, Kittrell FS, LaMarca H, Edwards D, Kerbawy S, Heestand JC, et al. An intraductal human-in-mouse transplantation model mimics the subtypes of ductal carcinoma in situ. Breast Cancer Res BCR. 2009;11(5):R66.CrossRefPubMed Behbod F, Kittrell FS, LaMarca H, Edwards D, Kerbawy S, Heestand JC, et al. An intraductal human-in-mouse transplantation model mimics the subtypes of ductal carcinoma in situ. Breast Cancer Res BCR. 2009;11(5):R66.CrossRefPubMed
10.
go back to reference Valdez KE, Fan F, Smith W, Allred DC, Medina D, Behbod F. Human primary ductal carcinoma in situ (DCIS) subtype-specific pathology is preserved in a mouse intraductal (MIND) xenograft model. J Pathol. 2011;225(4):565–73.CrossRefPubMedPubMedCentral Valdez KE, Fan F, Smith W, Allred DC, Medina D, Behbod F. Human primary ductal carcinoma in situ (DCIS) subtype-specific pathology is preserved in a mouse intraductal (MIND) xenograft model. J Pathol. 2011;225(4):565–73.CrossRefPubMedPubMedCentral
12.
go back to reference Miller FR, Santner SJ, Tait L, Dawson PJ. MCF10DCIS.com Xenograft Model of Human Comedo Ductal Carcinoma In Situ. J Natl Cancer Inst. 2000;92(14):1185a–6.CrossRef Miller FR, Santner SJ, Tait L, Dawson PJ. MCF10DCIS.com Xenograft Model of Human Comedo Ductal Carcinoma In Situ. J Natl Cancer Inst. 2000;92(14):1185a–6.CrossRef
13.
go back to reference Hu M, Peluffo G, Chen H, Gelman R, Schnitt S, Polyak K. Role of COX-2 in epithelial-stromal cell interactions and progression of ductal carcinoma in situ of the breast. Proc Natl Acad Sci U S A. 2009;106(9):3372–7.CrossRefPubMedPubMedCentral Hu M, Peluffo G, Chen H, Gelman R, Schnitt S, Polyak K. Role of COX-2 in epithelial-stromal cell interactions and progression of ductal carcinoma in situ of the breast. Proc Natl Acad Sci U S A. 2009;106(9):3372–7.CrossRefPubMedPubMedCentral
14.
go back to reference Swamydas M, Eddy JM, Burg KJL, Dréau D. Matrix compositions and the development of breast acini and ducts in 3D cultures. In Vitro Cell Dev Biol Anim. 2010;46(8):673–84.CrossRefPubMed Swamydas M, Eddy JM, Burg KJL, Dréau D. Matrix compositions and the development of breast acini and ducts in 3D cultures. In Vitro Cell Dev Biol Anim. 2010;46(8):673–84.CrossRefPubMed
15.
go back to reference Sung KE, Yang N, Pehlke C, Keely PJ, Eliceiri KW, Friedl A, et al. Transition to invasion in breast cancer: a microfluidic in vitro model enables examination of spatial and temporal effects. Integr Biol Quant Biosci Nano Macro. 2011;3(4):439–50. Sung KE, Yang N, Pehlke C, Keely PJ, Eliceiri KW, Friedl A, et al. Transition to invasion in breast cancer: a microfluidic in vitro model enables examination of spatial and temporal effects. Integr Biol Quant Biosci Nano Macro. 2011;3(4):439–50.
16.
go back to reference Sung KE, Su X, Berthier E, Pehlke C, Friedl A, Beebe DJ. Understanding the impact of 2D and 3D fibroblast cultures on in vitro breast cancer models. PLoS One. 2013;8(10):e76373.CrossRefPubMedPubMedCentral Sung KE, Su X, Berthier E, Pehlke C, Friedl A, Beebe DJ. Understanding the impact of 2D and 3D fibroblast cultures on in vitro breast cancer models. PLoS One. 2013;8(10):e76373.CrossRefPubMedPubMedCentral
17.
go back to reference Nelson CM, Bissell MJ. Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer. Annu Rev Cell Dev Biol. 2006;22:287–309.CrossRefPubMedPubMedCentral Nelson CM, Bissell MJ. Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer. Annu Rev Cell Dev Biol. 2006;22:287–309.CrossRefPubMedPubMedCentral
18.
go back to reference Verbridge SS, Chakrabarti A, DelNero P, Kwee B, Varner JD, Stroock AD, et al. Physicochemical regulation of endothelial sprouting in a 3D microfluidic angiogenesis model. J Biomed Mater Res A. 2013;101(10):2948–56.CrossRefPubMedPubMedCentral Verbridge SS, Chakrabarti A, DelNero P, Kwee B, Varner JD, Stroock AD, et al. Physicochemical regulation of endothelial sprouting in a 3D microfluidic angiogenesis model. J Biomed Mater Res A. 2013;101(10):2948–56.CrossRefPubMedPubMedCentral
19.
go back to reference Bischel LL, Sung KE, Jiminez-Torrez J, Mader B, Beebe DJ. The Importance of Being a Lumen. FASEB. 2014. published ahead of print. Bischel LL, Sung KE, Jiminez-Torrez J, Mader B, Beebe DJ. The Importance of Being a Lumen. FASEB. 2014. published ahead of print.
20.
go back to reference Nelson CM, Vanduijn MM, Inman JL, Fletcher DA, Bissell MJ. Tissue geometry determines sites of mammary branching morphogenesis in organotypic cultures. Science. 2006;314(5797):298–300.CrossRefPubMedPubMedCentral Nelson CM, Vanduijn MM, Inman JL, Fletcher DA, Bissell MJ. Tissue geometry determines sites of mammary branching morphogenesis in organotypic cultures. Science. 2006;314(5797):298–300.CrossRefPubMedPubMedCentral
21.
go back to reference Gomez EW, Chen QK, Gjorevski N, Nelson CM. Tissue geometry patterns epithelial-mesenchymal transition via intercellular mechanotransduction. J Cell Biochem. 2010;110(1):44–51.PubMedPubMedCentral Gomez EW, Chen QK, Gjorevski N, Nelson CM. Tissue geometry patterns epithelial-mesenchymal transition via intercellular mechanotransduction. J Cell Biochem. 2010;110(1):44–51.PubMedPubMedCentral
22.
go back to reference Bischel LL, Lee S-H, Beebe DJ. A practical method for patterning lumens through ECM hydrogels via viscous finger patterning. J Lab Autom. 2012;17(2):96–103.CrossRefPubMedPubMedCentral Bischel LL, Lee S-H, Beebe DJ. A practical method for patterning lumens through ECM hydrogels via viscous finger patterning. J Lab Autom. 2012;17(2):96–103.CrossRefPubMedPubMedCentral
23.
go back to reference Bischel LL, Young EWK, Mader BR, Beebe DJ. Tubeless microfluidic angiogenesis assay with three-dimensional endothelial-lined microvessels. Biomaterials. 2013;34(5):1471–7.CrossRefPubMed Bischel LL, Young EWK, Mader BR, Beebe DJ. Tubeless microfluidic angiogenesis assay with three-dimensional endothelial-lined microvessels. Biomaterials. 2013;34(5):1471–7.CrossRefPubMed
24.
go back to reference Jo B-H, Van Lerberghe LM, Motsegood KM, Beebe DJ. Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer. J Microelectromechanical Syst. 2000;9(1):76–81.CrossRef Jo B-H, Van Lerberghe LM, Motsegood KM, Beebe DJ. Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer. J Microelectromechanical Syst. 2000;9(1):76–81.CrossRef
25.
go back to reference Kuperwasser C, Chavarria T, Wu M, Magrane G, Gray JW, Carey L, et al. Reconstruction of functionally normal and malignant human breast tissues in mice. Proc Natl Acad Sci U S A. 2004;101(14):4966–71.CrossRefPubMedPubMedCentral Kuperwasser C, Chavarria T, Wu M, Magrane G, Gray JW, Carey L, et al. Reconstruction of functionally normal and malignant human breast tissues in mice. Proc Natl Acad Sci U S A. 2004;101(14):4966–71.CrossRefPubMedPubMedCentral
26.
go back to reference Sung KE, Su G, Pehlke C, Trier SM, Eliceiri KW, Keely PJ, et al. Control of 3-dimensional collagen matrix polymerization for reproducible human mammary fibroblast cell culture in microfluidic devices. Biomaterials. 2009;30(27):4833–41.CrossRefPubMedPubMedCentral Sung KE, Su G, Pehlke C, Trier SM, Eliceiri KW, Keely PJ, et al. Control of 3-dimensional collagen matrix polymerization for reproducible human mammary fibroblast cell culture in microfluidic devices. Biomaterials. 2009;30(27):4833–41.CrossRefPubMedPubMedCentral
27.
go back to reference Walker GM, Beebe DJ. A passive pumping method for microfluidic devices. Lab Chip. 2002;2(3):131–4.CrossRefPubMed Walker GM, Beebe DJ. A passive pumping method for microfluidic devices. Lab Chip. 2002;2(3):131–4.CrossRefPubMed
28.
go back to reference Gudjonsson T, Ronnov-Jessen L, Villadsen R, Rank F, Bissell MJ, Petersen OW. Normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for polarity and basement membrane deposition. J Cell Sci. 2002;115(Pt 1):39–50.PubMedPubMedCentral Gudjonsson T, Ronnov-Jessen L, Villadsen R, Rank F, Bissell MJ, Petersen OW. Normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for polarity and basement membrane deposition. J Cell Sci. 2002;115(Pt 1):39–50.PubMedPubMedCentral
29.
go back to reference Chrobak KM, Potter DR, Tien J. Formation of perfused, functional microvascular tubes in vitro. Microvasc Res. 2006;71(3):185–96.CrossRefPubMed Chrobak KM, Potter DR, Tien J. Formation of perfused, functional microvascular tubes in vitro. Microvasc Res. 2006;71(3):185–96.CrossRefPubMed
31.
go back to reference Montanez-Sauri SI, Sung KE, Puccinelli JP, Pehlke C, Beebe DJ. Automation of three-dimensional cell culture in arrayed microfluidic devices. J Lab Autom. 2011;16(3):171–85.CrossRefPubMedPubMedCentral Montanez-Sauri SI, Sung KE, Puccinelli JP, Pehlke C, Beebe DJ. Automation of three-dimensional cell culture in arrayed microfluidic devices. J Lab Autom. 2011;16(3):171–85.CrossRefPubMedPubMedCentral
32.
go back to reference Montanez-Sauri SI, Sung KE, Berthier E, Beebe DJ. Enabling screening in 3D microenvironments: probing matrix and stromal effects on the morphology and proliferation of T47D breast carcinoma cells. Integr Biol Quant Biosci Nano Macro. 2013;5(3):631–40. Montanez-Sauri SI, Sung KE, Berthier E, Beebe DJ. Enabling screening in 3D microenvironments: probing matrix and stromal effects on the morphology and proliferation of T47D breast carcinoma cells. Integr Biol Quant Biosci Nano Macro. 2013;5(3):631–40.
33.
go back to reference Itoh M, Nelson CM, Myers CA, Bissell MJ. Rap1 integrates tissue polarity, lumen formation, and tumorigenic potential in human breast epithelial cells. Cancer Res. 2007;67(10):4759–66.CrossRefPubMedPubMedCentral Itoh M, Nelson CM, Myers CA, Bissell MJ. Rap1 integrates tissue polarity, lumen formation, and tumorigenic potential in human breast epithelial cells. Cancer Res. 2007;67(10):4759–66.CrossRefPubMedPubMedCentral
34.
go back to reference Coradini D, Casarsa C, Oriana S. Epithelial cell polarity and tumorigenesis: new perspectives for cancer detection and treatment. Acta Pharmacol Sin. 2011;32(5):552–64.CrossRefPubMedPubMedCentral Coradini D, Casarsa C, Oriana S. Epithelial cell polarity and tumorigenesis: new perspectives for cancer detection and treatment. Acta Pharmacol Sin. 2011;32(5):552–64.CrossRefPubMedPubMedCentral
35.
go back to reference Grafton MMG, Wang L, Vidi P-A, Leary J, Lelièvre SA. Breast on-a-chip: mimicry of the channeling system of the breast for development of theranostics. Integr Biol Quant Biosci Nano Macro. 2011;3(4):451–9. Grafton MMG, Wang L, Vidi P-A, Leary J, Lelièvre SA. Breast on-a-chip: mimicry of the channeling system of the breast for development of theranostics. Integr Biol Quant Biosci Nano Macro. 2011;3(4):451–9.
36.
go back to reference Fogg VC, Liu C-J, Margolis B. Multiple regions of Crumbs3 are required for tight junction formation in MCF10A cells. J Cell Sci. 2005;118(13):2859–69.CrossRefPubMed Fogg VC, Liu C-J, Margolis B. Multiple regions of Crumbs3 are required for tight junction formation in MCF10A cells. J Cell Sci. 2005;118(13):2859–69.CrossRefPubMed
37.
go back to reference Vidi P-A, Maleki T, Ochoa M, Wang L, Clark SM, Leary JF, et al. Disease-on-a-chip: mimicry of tumor growth in mammary ducts. Lab Chip. 2014;14(1):172–7.CrossRefPubMed Vidi P-A, Maleki T, Ochoa M, Wang L, Clark SM, Leary JF, et al. Disease-on-a-chip: mimicry of tumor growth in mammary ducts. Lab Chip. 2014;14(1):172–7.CrossRefPubMed
38.
go back to reference Ma X-J, Dahiya S, Richardson E, Erlander M, Sgroi DC. Gene expression profiling of the tumor microenvironment during breast cancer progression. Breast Cancer Res BCR. 2009;11(1):R7.CrossRefPubMed Ma X-J, Dahiya S, Richardson E, Erlander M, Sgroi DC. Gene expression profiling of the tumor microenvironment during breast cancer progression. Breast Cancer Res BCR. 2009;11(1):R7.CrossRefPubMed
41.
go back to reference Provenzano PP, Eliceiri KW, Campbell JM, Inman DR, White JG, Keely PJ. Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med. 2006;4(1):38.CrossRefPubMedPubMedCentral Provenzano PP, Eliceiri KW, Campbell JM, Inman DR, White JG, Keely PJ. Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med. 2006;4(1):38.CrossRefPubMedPubMedCentral
42.
go back to reference Strupler M, Pena A-M, Hernest M, Tharaux P-L, Martin J-L, Beaurepaire E, et al. Second harmonic imaging and scoring of collagen in fibrotic tissues. Opt Express. 2007;15(7):4054–65.CrossRefPubMed Strupler M, Pena A-M, Hernest M, Tharaux P-L, Martin J-L, Beaurepaire E, et al. Second harmonic imaging and scoring of collagen in fibrotic tissues. Opt Express. 2007;15(7):4054–65.CrossRefPubMed
43.
go back to reference Pinder SE. Ductal carcinoma in situ (DCIS): pathological features, differential diagnosis, prognostic factors and specimen evaluation. Mod Pathol Off J U S Can Acad Pathol Inc. 2010;23 Suppl 2:S8–13. Pinder SE. Ductal carcinoma in situ (DCIS): pathological features, differential diagnosis, prognostic factors and specimen evaluation. Mod Pathol Off J U S Can Acad Pathol Inc. 2010;23 Suppl 2:S8–13.
44.
go back to reference Sneed GM, Duncan LD. Quantifying the extent of invasive carcinoma and margin status in partial mastectomy cases having a gross lesion: is a defined tissue processing protocol needed? Am J Clin Pathol. 2011;136(5):747–53.CrossRefPubMed Sneed GM, Duncan LD. Quantifying the extent of invasive carcinoma and margin status in partial mastectomy cases having a gross lesion: is a defined tissue processing protocol needed? Am J Clin Pathol. 2011;136(5):747–53.CrossRefPubMed
45.
go back to reference Khurana A, McKean H, Kim H, Kim S-H, Mcguire J, Roberts LR, et al. Silencing of HSulf-2 expression in MCF10DCIS.com cells attenuate ductal carcinoma in situ progression to invasive ductal carcinoma in vivo. Breast Cancer Res BCR. 2012;14(2):R43.CrossRefPubMed Khurana A, McKean H, Kim H, Kim S-H, Mcguire J, Roberts LR, et al. Silencing of HSulf-2 expression in MCF10DCIS.com cells attenuate ductal carcinoma in situ progression to invasive ductal carcinoma in vivo. Breast Cancer Res BCR. 2012;14(2):R43.CrossRefPubMed
46.
go back to reference Visscher DW, Nanjia-Makker P, Heppner G, Shekhar PV. Tamoxifen suppresses histologic progression to atypia and DCIS in MCFIOAT xenografts, a model of early human breast cancer. Breast Cancer Res Treat. 2001;65(1):41–7.CrossRefPubMed Visscher DW, Nanjia-Makker P, Heppner G, Shekhar PV. Tamoxifen suppresses histologic progression to atypia and DCIS in MCFIOAT xenografts, a model of early human breast cancer. Breast Cancer Res Treat. 2001;65(1):41–7.CrossRefPubMed
48.
go back to reference Bischel LL, Casavant BP, Young PA, Eliceiri KW, Basu HS, Beebe DJ. A microfluidic coculture and multiphoton FAD analysis assay provides insight into the influence of the bone microenvironment on prostate cancer cells. Integr Biol Quant Biosci Nano Macro. 2014;6(6):627–35. Bischel LL, Casavant BP, Young PA, Eliceiri KW, Basu HS, Beebe DJ. A microfluidic coculture and multiphoton FAD analysis assay provides insight into the influence of the bone microenvironment on prostate cancer cells. Integr Biol Quant Biosci Nano Macro. 2014;6(6):627–35.
Metadata
Title
Microfluidic model of ductal carcinoma in situ with 3D, organotypic structure
Authors
Lauren L Bischel
David J Beebe
Kyung E Sung
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2015
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-015-1007-5

Other articles of this Issue 1/2015

BMC Cancer 1/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine