Skip to main content
Top
Published in: BMC Pregnancy and Childbirth 1/2019

Open Access 01-12-2019 | Premature Birth | Research article

Revisiting the association between maternal and offspring preterm birth using a sibling design

Authors: Marcelo L. Urquia, Elizabeth Wall-Wieler, Chelsea A. Ruth, Xiaoqing Liu, Leslie L. Roos

Published in: BMC Pregnancy and Childbirth | Issue 1/2019

Login to get access

Abstract

Background

Previous studies have reported an intergenerational association between maternal and offspring preterm birth (PTB) but the nature of the association remains unclear. We assessed the association between maternal and offspring preterm birth using a quasi-experimental sibling design and distinguishing between preterm birth types.

Methods

We conducted a retrospective intergenerational cohort study of 39,573 women born singleton in Manitoba, Canada (1980–2002) who gave birth to 79,198 singleton infants (1995–2016). To account for familial confounding we defined a subcohort of 1033 sisters with discordant PTB status who subsequently gave birth and compared offspring PTB rates between 2499 differentially exposed cousins using log-binomial fixed-effects generalized estimating equation models. PTB was defined as a delivery < 37 gestation weeks, divided into spontaneous and provider-initiated.

Results

In the population cohort, mothers born preterm were more likely to give birth preterm [Adjusted Relative Risk (ARR): 1.39; 95% Confidence Interval (CI): 1.25, 1.54] and very preterm birth [ARR: 1.76; 95% CI: 1.29, 2.41]. However, in the siblings cohort, the intergenerational association was not apparent among births to sisters with discordant PTB status [ARR: 1.02; 95% CI: 0.77, 1.34 for preterm birth and ARR: 0.88; 95% CI: 0.38, 2.02 for very preterm birth]. Mothers born at term with a sister born preterm had a similarly elevated risk of delivering a preterm infant (10%) than their preterm sisters. Intergenerational patterns were observed for spontaneous PTB but not for provider-initiated PTB.

Conclusions

Our findings suggest that it is not the fact of having been born preterm that puts women at higher risk of delivering preterm, but the fact of having been born to a mother who ever delivered preterm. Consideration of a female family history of PTB may better identify women at higher risk of preterm delivery than relying on maternal preterm birth status alone. Further research may benefit from distinguishing preterm birth types.
Literature
1.
go back to reference Goldenberg RL, Culhane JF, Iams JD, Romero R. Epidemiology and causes of preterm birth. Lancet. 2008;371(9606):75–84.CrossRef Goldenberg RL, Culhane JF, Iams JD, Romero R. Epidemiology and causes of preterm birth. Lancet. 2008;371(9606):75–84.CrossRef
2.
go back to reference D'Onofrio BM, Class QA, Rickert ME, Larsson H, Långström N, Lichtenstein P. Preterm birth and mortality and morbidity: a population-based quasi-experimental study. JAMA Psychiatry. 2013;70(11):1231–40.CrossRef D'Onofrio BM, Class QA, Rickert ME, Larsson H, Långström N, Lichtenstein P. Preterm birth and mortality and morbidity: a population-based quasi-experimental study. JAMA Psychiatry. 2013;70(11):1231–40.CrossRef
3.
go back to reference Saigal S, Doyle LW. An overview of mortality and sequelae of preterm birth from infancy to adulthood. Lancet. 2008;371(9608):261–9.CrossRef Saigal S, Doyle LW. An overview of mortality and sequelae of preterm birth from infancy to adulthood. Lancet. 2008;371(9608):261–9.CrossRef
4.
go back to reference Iams JD, Romero R, Culhane JF, Goldenberg RL. Primary, secondary, and tertiary interventions to reduce the morbidity and mortality of preterm birth. Lancet. 2008;371(9607):164–75.CrossRef Iams JD, Romero R, Culhane JF, Goldenberg RL. Primary, secondary, and tertiary interventions to reduce the morbidity and mortality of preterm birth. Lancet. 2008;371(9607):164–75.CrossRef
5.
go back to reference Magnus P, Bakketeig LS, Skjaerven R. Correlations of birth weight and gestational age across generations. Ann Hum Biol. 1993;20:231–8.CrossRef Magnus P, Bakketeig LS, Skjaerven R. Correlations of birth weight and gestational age across generations. Ann Hum Biol. 1993;20:231–8.CrossRef
6.
go back to reference Klebanoff MA, Schulsinger C, Mednick BR, Secher NJ. Preterm and small-for-gestational-age birth across generations. Am J Obstet Gynecol. 1997;176:521–6.CrossRef Klebanoff MA, Schulsinger C, Mednick BR, Secher NJ. Preterm and small-for-gestational-age birth across generations. Am J Obstet Gynecol. 1997;176:521–6.CrossRef
7.
go back to reference Selling KE, Carstensen J, Finnstrom O, Sydsjo G. Intergenerational effects of preterm birth and reduced intrauterine growth: a population-based study of Swedish mother-offspring pairs. BJOG. 2006;113:430–40.CrossRef Selling KE, Carstensen J, Finnstrom O, Sydsjo G. Intergenerational effects of preterm birth and reduced intrauterine growth: a population-based study of Swedish mother-offspring pairs. BJOG. 2006;113:430–40.CrossRef
8.
go back to reference Boivin A, Luo ZC, Audibert F, Mâsse B, Lefebvre F, Tessier R, et al. Risk for preterm and very preterm delivery in women who were born preterm. Obstet Gynecol. 2015;125(5):1177–84.CrossRef Boivin A, Luo ZC, Audibert F, Mâsse B, Lefebvre F, Tessier R, et al. Risk for preterm and very preterm delivery in women who were born preterm. Obstet Gynecol. 2015;125(5):1177–84.CrossRef
9.
go back to reference Shah PS, Shah V. Knowledge synthesis group on determinants of preterm/lBW births. Influence of the maternal birth status on offspring: a systematic review and meta-analysis. Acta Obstet Gynecol Scand. 2009;88(12):1307–18.CrossRef Shah PS, Shah V. Knowledge synthesis group on determinants of preterm/lBW births. Influence of the maternal birth status on offspring: a systematic review and meta-analysis. Acta Obstet Gynecol Scand. 2009;88(12):1307–18.CrossRef
10.
go back to reference Egger M, Schneider M, Davey Smith G. Spurious precision? Meta-analysis of observational studies. BMJ. 1998;316(7125):140–4.CrossRef Egger M, Schneider M, Davey Smith G. Spurious precision? Meta-analysis of observational studies. BMJ. 1998;316(7125):140–4.CrossRef
11.
go back to reference Winkvist A, Mogren I, Högberg U. Familial patterns in birth characteristics: impact on individual and population risks. Int J Epidemiol. 1998;27(2):248–54.CrossRef Winkvist A, Mogren I, Högberg U. Familial patterns in birth characteristics: impact on individual and population risks. Int J Epidemiol. 1998;27(2):248–54.CrossRef
12.
go back to reference Kramer MS, Séguin L, Lydon J, Goulet L. Socio-economic disparities in pregnancy outcome: why do the poor fare so poorly? Paediatr Perinat Epidemiol. 2000;14(3):194–210.CrossRef Kramer MS, Séguin L, Lydon J, Goulet L. Socio-economic disparities in pregnancy outcome: why do the poor fare so poorly? Paediatr Perinat Epidemiol. 2000;14(3):194–210.CrossRef
13.
go back to reference Wu W, Witherspoon DJ, Fraser A, Clark EA, Rogers A, Stoddard GJ, et al. The heritability of gestational age in a two-million member cohort: implications for spontaneous preterm birth. Hum Genet. 2015;134(7):803–8.CrossRef Wu W, Witherspoon DJ, Fraser A, Clark EA, Rogers A, Stoddard GJ, et al. The heritability of gestational age in a two-million member cohort: implications for spontaneous preterm birth. Hum Genet. 2015;134(7):803–8.CrossRef
14.
go back to reference York TP, Eaves LJ, Lichtenstein P, Neale MC, Svensson A, Latendresse S, et al. Fetal and maternal genes’ influence on gestational age in a quantitative genetic analysis of 244,000 Swedish births. Am J Epidemiol. 2013;178(4):543–50.CrossRef York TP, Eaves LJ, Lichtenstein P, Neale MC, Svensson A, Latendresse S, et al. Fetal and maternal genes’ influence on gestational age in a quantitative genetic analysis of 244,000 Swedish births. Am J Epidemiol. 2013;178(4):543–50.CrossRef
15.
go back to reference Wilcox AJ, Skjaerven R, Lie RT. Familial patterns of preterm delivery: maternal and fetal contributions. Am J Epidemiol. 2008;167(4):474–9.CrossRef Wilcox AJ, Skjaerven R, Lie RT. Familial patterns of preterm delivery: maternal and fetal contributions. Am J Epidemiol. 2008;167(4):474–9.CrossRef
16.
go back to reference Savitz DA. Invited commentary: disaggregating preterm birth to determine etiology. Am J Epidemiol. 2008;168(9):990–2.CrossRef Savitz DA. Invited commentary: disaggregating preterm birth to determine etiology. Am J Epidemiol. 2008;168(9):990–2.CrossRef
17.
go back to reference Muglia LJ, Katz M. The enigma of spontaneous preterm birth. N Engl J Med. 2010;362(6):529–35.CrossRef Muglia LJ, Katz M. The enigma of spontaneous preterm birth. N Engl J Med. 2010;362(6):529–35.CrossRef
18.
go back to reference Ananth CV, Vintzileos AM. Epidemiology of preterm birth and its clinical subtypes. J Matern Fetal Neonatal Med. 2006;19(12):773–82.CrossRef Ananth CV, Vintzileos AM. Epidemiology of preterm birth and its clinical subtypes. J Matern Fetal Neonatal Med. 2006;19(12):773–82.CrossRef
19.
go back to reference Ananth CV, Getahun D, Peltier MR, Salihu HM, Vintzileos AM. Recurrence of spontaneous versus medically indicated preterm birth. Am J Obstet Gynecol. 2006;195(3):643–50.CrossRef Ananth CV, Getahun D, Peltier MR, Salihu HM, Vintzileos AM. Recurrence of spontaneous versus medically indicated preterm birth. Am J Obstet Gynecol. 2006;195(3):643–50.CrossRef
20.
go back to reference Susser E, Eide MG, Begg M. Invited commentary: the use of sibship studies to detect familial confounding. Am J Epidemiol. 2010;172(5):537–9.CrossRef Susser E, Eide MG, Begg M. Invited commentary: the use of sibship studies to detect familial confounding. Am J Epidemiol. 2010;172(5):537–9.CrossRef
21.
go back to reference Donovan SJ, Susser E. Commentary: advent of sibling designs. Int J Epidemiol. 2011;40(2):345–9.CrossRef Donovan SJ, Susser E. Commentary: advent of sibling designs. Int J Epidemiol. 2011;40(2):345–9.CrossRef
22.
go back to reference D'Onofrio BM, Lahey BB, Turkheimer E, Lichtenstein P. Critical need for family-based, quasi-experimental designs in integrating genetic and social science research. Am J Public Health. 2013;103(Suppl 1):S46–55.CrossRef D'Onofrio BM, Lahey BB, Turkheimer E, Lichtenstein P. Critical need for family-based, quasi-experimental designs in integrating genetic and social science research. Am J Public Health. 2013;103(Suppl 1):S46–55.CrossRef
23.
go back to reference Joseph KS, Fahey J. Canadian perinatal surveillance system. Validation of perinatal data in the discharge abstract database of the Canadian institute for health information. Chronic Dis Can. 2009;29(3):96–100.PubMed Joseph KS, Fahey J. Canadian perinatal surveillance system. Validation of perinatal data in the discharge abstract database of the Canadian institute for health information. Chronic Dis Can. 2009;29(3):96–100.PubMed
24.
go back to reference ICD-9-CM: International Classification of Diseases, 9th Revision, Clinical Modification. Salt Lake City, Utah: Medicode, 1996. ICD-9-CM: International Classification of Diseases, 9th Revision, Clinical Modification. Salt Lake City, Utah: Medicode, 1996.
25.
go back to reference Canadian Institute for Health Information (CIHI). Final report. The Canadian enhancement of ICD-10 (international statistical classification of diseases and related health problems, tenth revision): Ottawa, Ont., CIHI; 2001. Canadian Institute for Health Information (CIHI). Final report. The Canadian enhancement of ICD-10 (international statistical classification of diseases and related health problems, tenth revision): Ottawa, Ont., CIHI; 2001.
26.
go back to reference Roos LL. Nicol JP. A research registry: uses, development, and accuracy. J Clin Epidemiol. 1999 Jan;52(1):39–47.CrossRef Roos LL. Nicol JP. A research registry: uses, development, and accuracy. J Clin Epidemiol. 1999 Jan;52(1):39–47.CrossRef
28.
go back to reference Chateau D, Metge C, Prior H, Soodeen R. Learning from the census: the socio-economic factor index (SEFI) and health outcomes in Manitoba. Can J Public Health. 2012;103(Suppl 2):S23–7.PubMed Chateau D, Metge C, Prior H, Soodeen R. Learning from the census: the socio-economic factor index (SEFI) and health outcomes in Manitoba. Can J Public Health. 2012;103(Suppl 2):S23–7.PubMed
29.
go back to reference Allison PD. Fixed effects regression models. Washington, DC: Sage Publications Inc; 2009.CrossRef Allison PD. Fixed effects regression models. Washington, DC: Sage Publications Inc; 2009.CrossRef
30.
go back to reference Boyd HA, Poulsen G, Wohlfahrt J, Murray JC, Feenstra B, Melbye M. Maternal contributions to preterm delivery. Am J Epidemiol. 2009;170(11):1358–64.CrossRef Boyd HA, Poulsen G, Wohlfahrt J, Murray JC, Feenstra B, Melbye M. Maternal contributions to preterm delivery. Am J Epidemiol. 2009;170(11):1358–64.CrossRef
31.
go back to reference Svensson AC, Sandin S, Cnattingius S, Reilly M, Pawitan Y, Hultman CM, Lichtenstein P. Maternal effects for preterm birth: a genetic epidemiologic study of 630,000 families. Am J Epidemiol. 2009;170(11):1365–72.CrossRef Svensson AC, Sandin S, Cnattingius S, Reilly M, Pawitan Y, Hultman CM, Lichtenstein P. Maternal effects for preterm birth: a genetic epidemiologic study of 630,000 families. Am J Epidemiol. 2009;170(11):1365–72.CrossRef
32.
go back to reference Rasmussen S, Irgens LM. Occurrence of placental abruption in relatives. BJOG. 2009;116(5):693–9.CrossRef Rasmussen S, Irgens LM. Occurrence of placental abruption in relatives. BJOG. 2009;116(5):693–9.CrossRef
33.
go back to reference Frisell T, Öberg S, Kuja-Halkola R, Sjölander A. Sibling comparison designs: bias from non-shared confounders and measurement error. Epidemiology. 2012;23(5):713–20.CrossRef Frisell T, Öberg S, Kuja-Halkola R, Sjölander A. Sibling comparison designs: bias from non-shared confounders and measurement error. Epidemiology. 2012;23(5):713–20.CrossRef
34.
go back to reference Joseph KS, Huang L, Liu S, Ananth CV, Allen AC, Sauve R, et al. Reconciling the high rates of preterm and postterm birth in the United States. Obstet Gynecol. 2007;109(4):813–22.CrossRef Joseph KS, Huang L, Liu S, Ananth CV, Allen AC, Sauve R, et al. Reconciling the high rates of preterm and postterm birth in the United States. Obstet Gynecol. 2007;109(4):813–22.CrossRef
35.
go back to reference Kramer MS, Platt R, Yang H, Joseph KS, Wen SW, Morin L, et al. Secular trends in preterm birth: a hospital-based cohort study. JAMA. 1998;280(21):1849–54.CrossRef Kramer MS, Platt R, Yang H, Joseph KS, Wen SW, Morin L, et al. Secular trends in preterm birth: a hospital-based cohort study. JAMA. 1998;280(21):1849–54.CrossRef
36.
go back to reference Smylie J, Crengle S, Freemantle J, Taualii M. Indigenous birth outcomes in Australia, Canada, New Zealand and the United States - an overview. Open Womens Health J. 2010;4:7–17.CrossRef Smylie J, Crengle S, Freemantle J, Taualii M. Indigenous birth outcomes in Australia, Canada, New Zealand and the United States - an overview. Open Womens Health J. 2010;4:7–17.CrossRef
37.
go back to reference Aizer A, Currie J. The intergenerational transmission of inequality: maternal disadvantage and health at birth. Science. 2014;344(6186):856–61.CrossRef Aizer A, Currie J. The intergenerational transmission of inequality: maternal disadvantage and health at birth. Science. 2014;344(6186):856–61.CrossRef
38.
go back to reference Cnattingius S, Bergström R, Lipworth L, Kramer MS. Prepregnancy weight and the risk of adverse pregnancy outcomes. N Engl J Med. 1998;338(3):147–52.CrossRef Cnattingius S, Bergström R, Lipworth L, Kramer MS. Prepregnancy weight and the risk of adverse pregnancy outcomes. N Engl J Med. 1998;338(3):147–52.CrossRef
39.
go back to reference Derraik JG, Lundgren M, Cutfield WS, Ahlsson F. Maternal height and preterm birth: a study on 192,432 Swedish women. PLoS One. 2016;11(4):e0154304.CrossRef Derraik JG, Lundgren M, Cutfield WS, Ahlsson F. Maternal height and preterm birth: a study on 192,432 Swedish women. PLoS One. 2016;11(4):e0154304.CrossRef
Metadata
Title
Revisiting the association between maternal and offspring preterm birth using a sibling design
Authors
Marcelo L. Urquia
Elizabeth Wall-Wieler
Chelsea A. Ruth
Xiaoqing Liu
Leslie L. Roos
Publication date
01-12-2019
Publisher
BioMed Central
Keyword
Premature Birth
Published in
BMC Pregnancy and Childbirth / Issue 1/2019
Electronic ISSN: 1471-2393
DOI
https://doi.org/10.1186/s12884-019-2304-9

Other articles of this Issue 1/2019

BMC Pregnancy and Childbirth 1/2019 Go to the issue