Skip to main content
Top
Published in: BMC Pregnancy and Childbirth 1/2015

Open Access 01-12-2015 | Research article

Folic acid supplementation, preconception body mass index, and preterm delivery: findings from the preconception cohort data in a Chinese rural population

Authors: Yuanyuan Wang, Zongfu Cao, Zuoqi Peng, Xiaona Xin, Ya Zhang, Ying Yang, Yuan He, Jihong Xu, Xu Ma

Published in: BMC Pregnancy and Childbirth | Issue 1/2015

Login to get access

Abstract

Background

Folic acid (FA) supplementation before and during the first trimester can reduce the risk of occurrence of preterm delivery (PTD). Preconception body mass index (BMI) is also associated with PTD. This study aimed to investigate the combined effect of FA supplements and preconception BMI on the risk of PTD.

Methods

The data of a cohort from 2010–2011 that was obtained through a preconception care service in China was used (including 172,206 women). A multivariable regression model was used to investigate the association between maternal preconception conditions and the risk of PTD. The interaction of preconception BMI and FA supplementation was measured by a logistic regression model.

Results

Taking FA supplements in the preconception period or in the first trimester reduced the risk of PTD (odds ratio [OR] = 0.58 and OR = 0.61, respectively). Women with an abnormal BMI had an increased risk of PTD (OR = 1.09, OR = 1.10, and OR = 1.17 for underweight, overweight, and obese, respectively). Preconception BMI showed an interaction with the protective effect of FA supplementation for PTD. With regard to the interaction of FA supplementation, the adjusted odds ratio (aOR) was 0.57 (95 % CI: 0.51, 0.64) in underweight women, 0.85 (95 % CI: 0.73, 0.98) in overweight women, and 0.77 (95 % CI, 0.65, 0.91) in obese women. Preconception BMI also showed an interaction with the time of FA supplementation. Women with a normal BMI who began to take FA supplements in the preconception period had the lowest risk of PTD (aORs: 0.58 vs. 0.65 beginning in the first trimester). The aORs at preconception and the first trimester in the underweight group were 0.56 vs. 0.60. The aORs at preconception and the first trimester were 0.94 vs. 0.65 and 1.15 vs. 0.60 in the overweight and obesity groups, respectively.

Conclusions

In our study, FA supplements reduced the risk of PTD, while abnormal BMI raised the risk of PTD, although higher BMI categories did not have this higher risk once adjusted analysis was conducted. The protective effect of FA supplementation for PTD was reduced in women with overweight or obesity. To get better protection of FA supplementation, women with normal BMI or underweight should begin to use in preconception, while women with overweight or obesity should begin to use after conception.
Literature
1.
go back to reference Gravett MG, Rubens CE. Global Alliance to Prevent Prematurity and Stillbirth Technical Team: A framework for strategic investments in research to reduce the global burden of preterm birth. Am J Obstet Gynecol. 2012;207:368–73.CrossRefPubMed Gravett MG, Rubens CE. Global Alliance to Prevent Prematurity and Stillbirth Technical Team: A framework for strategic investments in research to reduce the global burden of preterm birth. Am J Obstet Gynecol. 2012;207:368–73.CrossRefPubMed
2.
go back to reference Liang J, Mao M, Dai L, Li X, Miao L, Li Q, et al. Neonatal mortality due to preterm birth at 28–36 weeks’ gestation in China, 2003–2008. Paediatr Perinat Epidemiol. 2011;25:593–600.CrossRefPubMed Liang J, Mao M, Dai L, Li X, Miao L, Li Q, et al. Neonatal mortality due to preterm birth at 28–36 weeks’ gestation in China, 2003–2008. Paediatr Perinat Epidemiol. 2011;25:593–600.CrossRefPubMed
3.
go back to reference Werler MM, Shapiro S, Mitchell AA. Mitchell, Periconceptional folic acid exposure and risk of occurrent neural tube defects. Jama. 1993;269:1257–61.CrossRefPubMed Werler MM, Shapiro S, Mitchell AA. Mitchell, Periconceptional folic acid exposure and risk of occurrent neural tube defects. Jama. 1993;269:1257–61.CrossRefPubMed
4.
go back to reference Shaw GM, Schaffer D, Velie EM, Morland K, Harris JA. Periconceptional vitamin use, dietary folate, and the occurrence of neural tube defects. Epidemiology. 1995;6:219–26.CrossRefPubMed Shaw GM, Schaffer D, Velie EM, Morland K, Harris JA. Periconceptional vitamin use, dietary folate, and the occurrence of neural tube defects. Epidemiology. 1995;6:219–26.CrossRefPubMed
5.
go back to reference Rozendaal AM, van Essen AJ, te Meerman GJ, Bakker MK, van der Biezen JJ, Goorhuis-Brouwer SM, et al. Periconceptional folic acid associated with an increased risk of oral clefts relative to non-folate related malformations in the Northern Netherlands: a population based case–control study. Eur J Epidemiol. 2013;28:875–87.CrossRefPubMed Rozendaal AM, van Essen AJ, te Meerman GJ, Bakker MK, van der Biezen JJ, Goorhuis-Brouwer SM, et al. Periconceptional folic acid associated with an increased risk of oral clefts relative to non-folate related malformations in the Northern Netherlands: a population based case–control study. Eur J Epidemiol. 2013;28:875–87.CrossRefPubMed
6.
go back to reference Li Z, Ye R, Zhang L, Li H, Liu J, Ren A. Periconceptional folic acid supplementation and the risk of preterm births in China: a large prospective cohort study. Int J Epidemiol. 2014;43:1132–9.CrossRefPubMedPubMedCentral Li Z, Ye R, Zhang L, Li H, Liu J, Ren A. Periconceptional folic acid supplementation and the risk of preterm births in China: a large prospective cohort study. Int J Epidemiol. 2014;43:1132–9.CrossRefPubMedPubMedCentral
7.
go back to reference Czeizel AE, Puhó EH, Langmar Z, Acs N, Bánhidy F. Possible association of folic acid supplementation during pregnancy with reduction of preterm birth: a population-based study. Eur J Obstet Gynecol Reprod Biol. 2010;148:135–40.CrossRefPubMed Czeizel AE, Puhó EH, Langmar Z, Acs N, Bánhidy F. Possible association of folic acid supplementation during pregnancy with reduction of preterm birth: a population-based study. Eur J Obstet Gynecol Reprod Biol. 2010;148:135–40.CrossRefPubMed
8.
go back to reference Naimi AI, Auger N. Population-wide folic acid fortification and preterm birth: testing the folate depletion hypothesis. Am J Public Health. 2015;105(4):793–5.CrossRefPubMed Naimi AI, Auger N. Population-wide folic acid fortification and preterm birth: testing the folate depletion hypothesis. Am J Public Health. 2015;105(4):793–5.CrossRefPubMed
9.
go back to reference Papadopoulou E, Stratakis N, Roumeliotaki T, Sarri K, Merlo DF, Kogevinas M, et al. The effect of high doses of folic acid and iron supplementation in early-to-mid pregnancy on prematurity and fetal growth retardation: the mother-child cohort study in Crete, Greece (Rhea study). Eur J Nutr. 2013;52:327–36.CrossRefPubMed Papadopoulou E, Stratakis N, Roumeliotaki T, Sarri K, Merlo DF, Kogevinas M, et al. The effect of high doses of folic acid and iron supplementation in early-to-mid pregnancy on prematurity and fetal growth retardation: the mother-child cohort study in Crete, Greece (Rhea study). Eur J Nutr. 2013;52:327–36.CrossRefPubMed
10.
go back to reference Dunlop AL, Taylor RN, Tangpricha V, Fortunato S, Menon R. Maternal micronutrient status and preterm versus term birth for black and white US women. Reprod Sci. 2012;19:939–48.CrossRefPubMedPubMedCentral Dunlop AL, Taylor RN, Tangpricha V, Fortunato S, Menon R. Maternal micronutrient status and preterm versus term birth for black and white US women. Reprod Sci. 2012;19:939–48.CrossRefPubMedPubMedCentral
11.
go back to reference Yamada T, Morikawa M, Yamada T, Kishi R, Sengoku K, Endo T, et al. First-trimester serum folate levels and subsequent risk of abortion and preterm birth among Japanese women with singleton pregnancies. Arch Gynecol Obstet. 2013;287:9–14.CrossRefPubMed Yamada T, Morikawa M, Yamada T, Kishi R, Sengoku K, Endo T, et al. First-trimester serum folate levels and subsequent risk of abortion and preterm birth among Japanese women with singleton pregnancies. Arch Gynecol Obstet. 2013;287:9–14.CrossRefPubMed
12.
go back to reference Naimi AI, Auger N. Population-wide folic acid fortification and preterm birth: testing the folate depletion hypothesis. Am J Public Health. 2015;105:793–5.CrossRefPubMed Naimi AI, Auger N. Population-wide folic acid fortification and preterm birth: testing the folate depletion hypothesis. Am J Public Health. 2015;105:793–5.CrossRefPubMed
13.
go back to reference Lassi ZS, Salam RA, Haider BA, Bhutta ZA. Folic acid supplementation during pregnancy for maternal health and pregnancy outcomes. Cochrane Database Syst Rev. 2013;3:CD006896.PubMed Lassi ZS, Salam RA, Haider BA, Bhutta ZA. Folic acid supplementation during pregnancy for maternal health and pregnancy outcomes. Cochrane Database Syst Rev. 2013;3:CD006896.PubMed
14.
go back to reference Bakker R, Timmermans S, Steegers EA, Hofman A, Jaddoe VW. Folic acid supplements modify the adverse effects of maternal smoking on fetal growth and neonatal complications. J Nutr. 2011;141:2172–9.CrossRefPubMed Bakker R, Timmermans S, Steegers EA, Hofman A, Jaddoe VW. Folic acid supplements modify the adverse effects of maternal smoking on fetal growth and neonatal complications. J Nutr. 2011;141:2172–9.CrossRefPubMed
15.
go back to reference Shah R, Mullany LC, Darmstadt GL, Mannan I, Rahman SM, Talukder RR, et al. Incidence and risk factors of preterm birth in a rural Bangladeshi cohort. BMC Pediatr. 2014;14:112.CrossRefPubMedPubMedCentral Shah R, Mullany LC, Darmstadt GL, Mannan I, Rahman SM, Talukder RR, et al. Incidence and risk factors of preterm birth in a rural Bangladeshi cohort. BMC Pediatr. 2014;14:112.CrossRefPubMedPubMedCentral
16.
go back to reference Chen LW, Lim AL, Colega M, Tint MT, Aris IM, Tan CS, et al. Maternal folate status, but not that of vitamins B-12 or B-6, is associated with gestational age and preterm birth risk in a multiethnic Asian population. J Nutr. 2015;145:113–20.CrossRefPubMed Chen LW, Lim AL, Colega M, Tint MT, Aris IM, Tan CS, et al. Maternal folate status, but not that of vitamins B-12 or B-6, is associated with gestational age and preterm birth risk in a multiethnic Asian population. J Nutr. 2015;145:113–20.CrossRefPubMed
17.
go back to reference Scholl TO, Hediger ML, Schall JI, Khoo CS, Fischer RL. Dietary and serum folate: their influence on the outcome of pregnancy. Am J Clin Nutr. 1996;63:520–5.PubMed Scholl TO, Hediger ML, Schall JI, Khoo CS, Fischer RL. Dietary and serum folate: their influence on the outcome of pregnancy. Am J Clin Nutr. 1996;63:520–5.PubMed
18.
go back to reference Siega-Riz AM, Savitz DA, Zeisel SH, Thorp JM, Herring A. Second trimester folate status and preterm birth. Am J Obstet Gynecol. 2004;191:1851–7.CrossRefPubMed Siega-Riz AM, Savitz DA, Zeisel SH, Thorp JM, Herring A. Second trimester folate status and preterm birth. Am J Obstet Gynecol. 2004;191:1851–7.CrossRefPubMed
19.
go back to reference Zhao M, Chen YH, Dong XT, Zhou J, Chen X, Wang H, et al. Xu DX Folic acid protects against lipopolysaccharide-induced preterm delivery and intrauterine growth restriction through its anti-inflammatory effect in mice. PLoS One. 2013;8:e82713.CrossRefPubMedPubMedCentral Zhao M, Chen YH, Dong XT, Zhou J, Chen X, Wang H, et al. Xu DX Folic acid protects against lipopolysaccharide-induced preterm delivery and intrauterine growth restriction through its anti-inflammatory effect in mice. PLoS One. 2013;8:e82713.CrossRefPubMedPubMedCentral
20.
go back to reference Kim H, Hwang JY, Ha EH, Park H, Ha M, Lee SJ, et al. Association of maternal folate nutrition and serum C-reactive protein concentrations with gestational age at delivery. Eur J Clin Nutr. 2011;65:350–6.CrossRefPubMed Kim H, Hwang JY, Ha EH, Park H, Ha M, Lee SJ, et al. Association of maternal folate nutrition and serum C-reactive protein concentrations with gestational age at delivery. Eur J Clin Nutr. 2011;65:350–6.CrossRefPubMed
21.
go back to reference Simhan HN, Himes KP, Venkataramanan R, Bodnar LM. Maternal serum folate species in early pregnancy and lower genital tract inflammatory milieu. Am J Obstet Gynecol. 2011;205(61):e1–7.PubMed Simhan HN, Himes KP, Venkataramanan R, Bodnar LM. Maternal serum folate species in early pregnancy and lower genital tract inflammatory milieu. Am J Obstet Gynecol. 2011;205(61):e1–7.PubMed
22.
go back to reference Dhobale M, Chavan P, Kulkarni A, Mehendale S, Pisal H, Joshi S. Reduced folate, increased vitamin B(12) and homocysteine concentrations in women delivering preterm. Ann Nutr Metab. 2012;61:7–14.CrossRefPubMed Dhobale M, Chavan P, Kulkarni A, Mehendale S, Pisal H, Joshi S. Reduced folate, increased vitamin B(12) and homocysteine concentrations in women delivering preterm. Ann Nutr Metab. 2012;61:7–14.CrossRefPubMed
23.
go back to reference Kim MW, Hong SC, Choi JS, Han JY, Oh MJ, Kim HJ, et al. folate and pregnancy outcomes. J Obstet Gynaecol. 2012;32:520–4.CrossRefPubMed Kim MW, Hong SC, Choi JS, Han JY, Oh MJ, Kim HJ, et al. folate and pregnancy outcomes. J Obstet Gynaecol. 2012;32:520–4.CrossRefPubMed
24.
go back to reference Papachatzi E, Dimitriou G, Dimitropoulos K, Vantarakis A. Pre-pregnancy obesity: maternal, neonatal and childhood outcomes. J Neonatal Perinatal Med. 2013;6:203–16.PubMed Papachatzi E, Dimitriou G, Dimitropoulos K, Vantarakis A. Pre-pregnancy obesity: maternal, neonatal and childhood outcomes. J Neonatal Perinatal Med. 2013;6:203–16.PubMed
25.
go back to reference Lynch AM, Hart JE, Agwu OC, Fisher BM, West NA, Gibbs RS. Association of extremes of prepregnancy BMI with the clinical presentations of preterm birth. Am J Obstet Gynecol. 2014;210(428):e1–9.PubMed Lynch AM, Hart JE, Agwu OC, Fisher BM, West NA, Gibbs RS. Association of extremes of prepregnancy BMI with the clinical presentations of preterm birth. Am J Obstet Gynecol. 2014;210(428):e1–9.PubMed
27.
go back to reference Fujiwara K, Aoki S, Kurasawa K, Okuda M, Takahashi T, Hirahara F. Associations of maternal pre-pregnancy underweight with small-for-gestational-age and spontaneous preterm birth, and optimal gestational weight gain in Japanese women. J Obstet Gynaecol Res. 2014;40:988–94.CrossRefPubMed Fujiwara K, Aoki S, Kurasawa K, Okuda M, Takahashi T, Hirahara F. Associations of maternal pre-pregnancy underweight with small-for-gestational-age and spontaneous preterm birth, and optimal gestational weight gain in Japanese women. J Obstet Gynaecol Res. 2014;40:988–94.CrossRefPubMed
28.
go back to reference Shin D, Song WO. Prepregnancy body mass index is an independent risk factor for gestational hypertension, gestational diabetes, preterm labor, and small- and large-for-gestational-age infants. J Matern Fetal Neonatal Med. 2015;28:1679–86.CrossRefPubMed Shin D, Song WO. Prepregnancy body mass index is an independent risk factor for gestational hypertension, gestational diabetes, preterm labor, and small- and large-for-gestational-age infants. J Matern Fetal Neonatal Med. 2015;28:1679–86.CrossRefPubMed
29.
go back to reference Parker MG, Ouyang F, Pearson C, Gillman MW, Belfort MB, Hong X, et al. Prepregnancy body mass index and risk of preterm birth: association heterogeneity by preterm subgroups. BMC Pregnancy Childbirth. 2014;14:153.CrossRefPubMedPubMedCentral Parker MG, Ouyang F, Pearson C, Gillman MW, Belfort MB, Hong X, et al. Prepregnancy body mass index and risk of preterm birth: association heterogeneity by preterm subgroups. BMC Pregnancy Childbirth. 2014;14:153.CrossRefPubMedPubMedCentral
30.
go back to reference Shaw GM, Carmichael SL, Yang W. Siega-Riz AM; National Birth Defects Prevention Study: Periconceptional intake of folic acid and food folate and risks of preterm delivery. Am J Perinatol. 2011;28:747–52.CrossRefPubMed Shaw GM, Carmichael SL, Yang W. Siega-Riz AM; National Birth Defects Prevention Study: Periconceptional intake of folic acid and food folate and risks of preterm delivery. Am J Perinatol. 2011;28:747–52.CrossRefPubMed
31.
go back to reference Tinker SC, Hamner HC, Berry RJ, Bailey LB, Pfeiffer CM. Does obesity modify the association of supplemental folic acid with folate status among nonpregnant women of childbearing age in the United States? Birth Defects Res A Clin Mol Teratol. 2012;94:749–55.CrossRefPubMed Tinker SC, Hamner HC, Berry RJ, Bailey LB, Pfeiffer CM. Does obesity modify the association of supplemental folic acid with folate status among nonpregnant women of childbearing age in the United States? Birth Defects Res A Clin Mol Teratol. 2012;94:749–55.CrossRefPubMed
32.
go back to reference Mojtabai R. Body mass index and serum folate in childbearing age women. Eur J Epidemiol. 2004;19(11):1029–36.CrossRefPubMed Mojtabai R. Body mass index and serum folate in childbearing age women. Eur J Epidemiol. 2004;19(11):1029–36.CrossRefPubMed
33.
go back to reference da Silva VR, Hausman DB, Kauwell GP, Sokolow A, Tackett RL, Rathbun SL, et al. Obesity affects short-term folate pharmacokinetics in women of childbearing age. Int J Obes (Lond). 2013;37:1608–10.CrossRef da Silva VR, Hausman DB, Kauwell GP, Sokolow A, Tackett RL, Rathbun SL, et al. Obesity affects short-term folate pharmacokinetics in women of childbearing age. Int J Obes (Lond). 2013;37:1608–10.CrossRef
34.
go back to reference Kim H, Hwang JY, Kim KN, Ha EH, Park H, Ha M, et al. Relationship between body-mass index and serum folate concentrations in pregnant women. Eur J Clin Nutr. 2012;66:136–8.CrossRefPubMed Kim H, Hwang JY, Kim KN, Ha EH, Park H, Ha M, et al. Relationship between body-mass index and serum folate concentrations in pregnant women. Eur J Clin Nutr. 2012;66:136–8.CrossRefPubMed
35.
go back to reference Stern SJ, Matok I, Kapur B, Koren G. Dosage requirements for periconceptional folic acid supplementation: accounting for BMI and lean body weight. J Obstet Gynaecol Can. 2012;34:374–8.CrossRefPubMed Stern SJ, Matok I, Kapur B, Koren G. Dosage requirements for periconceptional folic acid supplementation: accounting for BMI and lean body weight. J Obstet Gynaecol Can. 2012;34:374–8.CrossRefPubMed
36.
go back to reference Wilson RD, Johnson JA, Wyatt P, Allen V, Gagnon A, Langlois S, et al. Genetics Committee of the Society of Obstetricians and Gynaecologists of Canada and The Motherrisk Program: Pre-conceptional vitamin/folic acid supplementation 2007: the use of folic acid in combination with a multivitamin supplement for the prevention of neural tube defects and other congenital anomalies. J Obstet Gynaecol Can. 2007;29:1003–26.CrossRefPubMed Wilson RD, Johnson JA, Wyatt P, Allen V, Gagnon A, Langlois S, et al. Genetics Committee of the Society of Obstetricians and Gynaecologists of Canada and The Motherrisk Program: Pre-conceptional vitamin/folic acid supplementation 2007: the use of folic acid in combination with a multivitamin supplement for the prevention of neural tube defects and other congenital anomalies. J Obstet Gynaecol Can. 2007;29:1003–26.CrossRefPubMed
38.
go back to reference Goldenberg RL, Culhane JF, Iams JD, Romero R. Epidemiology and causes of preterm birth. Lancet. 2008;371:75–84.CrossRefPubMed Goldenberg RL, Culhane JF, Iams JD, Romero R. Epidemiology and causes of preterm birth. Lancet. 2008;371:75–84.CrossRefPubMed
40.
go back to reference Chen C, Lu FC, Department of Disease Control Ministry of Health, PR China. The guidelines for prevention and control of overweight and obesity in Chinese adults. Biomed Environ Sci. 2004;17(Suppl):1–36.PubMed Chen C, Lu FC, Department of Disease Control Ministry of Health, PR China. The guidelines for prevention and control of overweight and obesity in Chinese adults. Biomed Environ Sci. 2004;17(Suppl):1–36.PubMed
41.
go back to reference Rothman K, Greenland S, Lash T, editors. Modern Epidemiology. Philadelphia: Lippincott Williams & Wilkins; 2008. Rothman K, Greenland S, Lash T, editors. Modern Epidemiology. Philadelphia: Lippincott Williams & Wilkins; 2008.
42.
go back to reference Liu J, Jin L, Meng Q, Gao L, Zhang L, Li Z, et al. Changes in folic acid supplementation behaviour among women of reproductive age after the implementation of a massive supplementation programme in China. Public Health Nutr. 2015;18:582–8.CrossRefPubMed Liu J, Jin L, Meng Q, Gao L, Zhang L, Li Z, et al. Changes in folic acid supplementation behaviour among women of reproductive age after the implementation of a massive supplementation programme in China. Public Health Nutr. 2015;18:582–8.CrossRefPubMed
43.
go back to reference Mantovani E, Filippini F, Bortolus R, Franchi M. Folic acid supplementation and preterm birth: results from observational studies. Biomed Res Int. 2014;2014:481914.CrossRefPubMedPubMedCentral Mantovani E, Filippini F, Bortolus R, Franchi M. Folic acid supplementation and preterm birth: results from observational studies. Biomed Res Int. 2014;2014:481914.CrossRefPubMedPubMedCentral
44.
go back to reference Sengpiel V, Bacelis J, Myhre R, Myking S, Devold Pay AS, Haugen M, et al. Folic acid supplementation, dietary folate intake during pregnancy and risk for spontaneous preterm delivery: a prospective observational cohort study. BMC Pregnancy Childbirth. 2014;14:375.CrossRefPubMedPubMedCentral Sengpiel V, Bacelis J, Myhre R, Myking S, Devold Pay AS, Haugen M, et al. Folic acid supplementation, dietary folate intake during pregnancy and risk for spontaneous preterm delivery: a prospective observational cohort study. BMC Pregnancy Childbirth. 2014;14:375.CrossRefPubMedPubMedCentral
45.
go back to reference Johnson TS, Rottier KJ, Luellwitz A, Kirby RS. Maternal prepregnancy body mass index and delivery of a preterm infant in Missouri 1998–2000. Public Health Nurs. 2009;26:3–13.CrossRefPubMed Johnson TS, Rottier KJ, Luellwitz A, Kirby RS. Maternal prepregnancy body mass index and delivery of a preterm infant in Missouri 1998–2000. Public Health Nurs. 2009;26:3–13.CrossRefPubMed
46.
go back to reference Mandal D, Manda S, Rakshi A, Dey RP, Biswas SC, Banerjee A. Maternal obesity and pregnancy outcome: a prospective analysis. J Assoc Physicians India. 2011;59:486–9.PubMed Mandal D, Manda S, Rakshi A, Dey RP, Biswas SC, Banerjee A. Maternal obesity and pregnancy outcome: a prospective analysis. J Assoc Physicians India. 2011;59:486–9.PubMed
47.
go back to reference Sukla KK, Tiwari PK, Kumar A, Raman R. Low birthweight (LBW) and neonatal hyperbilirubinemia (NNH) in an Indian cohort: association of homocysteine, its metabolic pathway genes and micronutrients as risk factors. PLoS One. 2013;8:e71587.CrossRefPubMedPubMedCentral Sukla KK, Tiwari PK, Kumar A, Raman R. Low birthweight (LBW) and neonatal hyperbilirubinemia (NNH) in an Indian cohort: association of homocysteine, its metabolic pathway genes and micronutrients as risk factors. PLoS One. 2013;8:e71587.CrossRefPubMedPubMedCentral
48.
go back to reference Goldberg BB, Alvarado S, Chavez C, Chen BH, Dick LM, Felix RJ, et al. Teratogen Information Service: Prevalence of periconceptional folic acid use and perceived barriers to the postgestation continuance of supplemental folic acid: survey results from a Teratogen Information Service. Birth Defects Res A Clin Mol Teratol. 2006;76:193–9.CrossRefPubMed Goldberg BB, Alvarado S, Chavez C, Chen BH, Dick LM, Felix RJ, et al. Teratogen Information Service: Prevalence of periconceptional folic acid use and perceived barriers to the postgestation continuance of supplemental folic acid: survey results from a Teratogen Information Service. Birth Defects Res A Clin Mol Teratol. 2006;76:193–9.CrossRefPubMed
49.
go back to reference Watkins ML, Scanlon KS, Mulinare J, Khoury MJ. Is maternal obesity a risk factor for anencephaly and spina bifida? Epidemiology. 1996;7:507–12.CrossRefPubMed Watkins ML, Scanlon KS, Mulinare J, Khoury MJ. Is maternal obesity a risk factor for anencephaly and spina bifida? Epidemiology. 1996;7:507–12.CrossRefPubMed
50.
go back to reference Bird JK, Ronnenberg AG, Choi SW, Du F, Mason JB, Liu Z. Obesity is associated with increased red blood cell folate despite lower dietary intakes and serum concentrations. J Nutr. 2015;145(1):79–86.CrossRefPubMed Bird JK, Ronnenberg AG, Choi SW, Du F, Mason JB, Liu Z. Obesity is associated with increased red blood cell folate despite lower dietary intakes and serum concentrations. J Nutr. 2015;145(1):79–86.CrossRefPubMed
51.
go back to reference Bergen NE, Jaddoe VW, Timmermans S, Hofman A, Lindemans J, Russcher H, et al. Homocysteine and folate concentrations in early pregnancy and the risk of adverse pregnancy outcomes: the Generation R Study. BJOG. 2012;119:739–51.CrossRefPubMed Bergen NE, Jaddoe VW, Timmermans S, Hofman A, Lindemans J, Russcher H, et al. Homocysteine and folate concentrations in early pregnancy and the risk of adverse pregnancy outcomes: the Generation R Study. BJOG. 2012;119:739–51.CrossRefPubMed
52.
go back to reference Wang M, Wang ZP, Gao LJ, Gong R, Sun XH, Zhao ZT. Maternal body mass index and the association between folic acid supplements and neural tube defects. Acta Paediatr. 2013;102:908–13.CrossRefPubMed Wang M, Wang ZP, Gao LJ, Gong R, Sun XH, Zhao ZT. Maternal body mass index and the association between folic acid supplements and neural tube defects. Acta Paediatr. 2013;102:908–13.CrossRefPubMed
53.
go back to reference Xing XY, Tao FB, Hao JH, Huang K, Huang ZH, Zhu XM, et al. Periconceptional folic acid supplementation among women attending antenatal clinic in Anhui, China: data from a population-based cohort study. Midwifery. 2012;28:291–7.CrossRefPubMed Xing XY, Tao FB, Hao JH, Huang K, Huang ZH, Zhu XM, et al. Periconceptional folic acid supplementation among women attending antenatal clinic in Anhui, China: data from a population-based cohort study. Midwifery. 2012;28:291–7.CrossRefPubMed
54.
go back to reference Bukowski R, Malone FD, Porter FT, Nyberg DA, Comstock CH, Hankins GD, et al. Preconceptional folate supplementation and the risk of spontaneous preterm birth: a cohort study. PLoS Med. 2009;6:e1000061.CrossRefPubMedPubMedCentral Bukowski R, Malone FD, Porter FT, Nyberg DA, Comstock CH, Hankins GD, et al. Preconceptional folate supplementation and the risk of spontaneous preterm birth: a cohort study. PLoS Med. 2009;6:e1000061.CrossRefPubMedPubMedCentral
Metadata
Title
Folic acid supplementation, preconception body mass index, and preterm delivery: findings from the preconception cohort data in a Chinese rural population
Authors
Yuanyuan Wang
Zongfu Cao
Zuoqi Peng
Xiaona Xin
Ya Zhang
Ying Yang
Yuan He
Jihong Xu
Xu Ma
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Pregnancy and Childbirth / Issue 1/2015
Electronic ISSN: 1471-2393
DOI
https://doi.org/10.1186/s12884-015-0766-y

Other articles of this Issue 1/2015

BMC Pregnancy and Childbirth 1/2015 Go to the issue