Skip to main content
Top
Published in: BMC Neurology 1/2017

Open Access 01-12-2017 | Research article

What is the optimal sequence of decompression for multilevel noncontinuous spinal cord compression injuries in rabbits?

Authors: Chaohua Yang, Baoqing Yu, Fenfen Ma, Huiping Lu, Jianmin Huang, Qinghua You, Bin Yu, Jianlan Qiao, Jianjun Feng

Published in: BMC Neurology | Issue 1/2017

Login to get access

Abstract

Background

In recent years, multilevel spinal cord injuries (SCIs) have gained a substantial amount of attention from clinicians and researchers. Multilevel noncontinuous SCI patients cannot undergo the multiple steps of a one-stage operation because of a poor general condition or a lack of proper surgical approaches. The surgeon subsequently faces the decision of whether to initially relieve the rostral or caudal compression. In this study, we established a spinal cord compression model involving two noncontinuous segments in rabbits to evaluate the effects of differences in decompression order on the functional recovery of the spinal cord.

Methods

A Fogarty catheter was inserted into the epidural space through a hole in T6-7 and advanced 3 cm rostrally or caudally. Following successful model establishment, which was demonstrated by an evaluation of evoked potentials, balloons of different volumes (40 μl or 50 μl) were inflated in the experimental groups, whereas no balloons were inflated in the control group. The experimental groups underwent the first decompression in the rostral or caudal area at 1 week post-injury; the second decompression was performed at 2 weeks post-injury. For 6 weeks post-injury, the animals were tested to determine behavioral scores, somatosensory evoked potentials (SEPs) and radiographic imaging changes; histological and apoptosis assay results were subsequently analyzed.

Results

The behavioral test results and onset latency of the SEPs indicated that there were significant differences between priority rostral decompression (PRD) and priority caudal decompression (PCD) in the 50-μl compression group at 6 weeks post-injury; however, there were no significant differences between the two procedures in the 40-μl group at the same time point. Moreover, there were no significant peak-to-peak amplitude differences between the two procedures in the 50-μl compression group.

Conclusions

The findings of this study suggested that preferential rostral decompression was more beneficial than priority caudal decompression with respect to facilitating spinal cord functional recovery in rabbits with severe paraplegia and may provide clinicians with a reference for the clinical treatment of multiple-segment spinal cord compression injuries.
Literature
4.
go back to reference Pedram MS, Dehghan MM, Soleimani M, Sharifi D, Marjanmehr SH, Nasiri Z. Transplantation of a combination of autologous neural differentiated and undifferentiated mesenchymal stem cells into injured spinal cord of rats. Spinal Cord. 2010;48:457–63. doi:10.1038/sc.2009.153.CrossRefPubMed Pedram MS, Dehghan MM, Soleimani M, Sharifi D, Marjanmehr SH, Nasiri Z. Transplantation of a combination of autologous neural differentiated and undifferentiated mesenchymal stem cells into injured spinal cord of rats. Spinal Cord. 2010;48:457–63. doi:10.​1038/​sc.​2009.​153.CrossRefPubMed
6.
go back to reference Gonzalez AA, Jeyanandarajan D, Hansen C, Zada G, Hsieh PC. Intraoperative neurophysiological monitoring during spine surgery: a review. Neurosurg Focus. 2009;27, E6.CrossRefPubMed Gonzalez AA, Jeyanandarajan D, Hansen C, Zada G, Hsieh PC. Intraoperative neurophysiological monitoring during spine surgery: a review. Neurosurg Focus. 2009;27, E6.CrossRefPubMed
8.
go back to reference Reuter DG, Tacker WA, Badylak SF, Voorhees WD, Konrad PE. Correlation of motor-evoked potential response to ischemic spinal cord damage. J Thorac Cardiovasc Surg. 1992;104:262–72.PubMed Reuter DG, Tacker WA, Badylak SF, Voorhees WD, Konrad PE. Correlation of motor-evoked potential response to ischemic spinal cord damage. J Thorac Cardiovasc Surg. 1992;104:262–72.PubMed
9.
go back to reference Rivlin AS, Tator CH. Effect of duration of acute spinal-cord compression in a new acute cord injury model in rat. Surg Neurol. 1978;10:39–43. Rivlin AS, Tator CH. Effect of duration of acute spinal-cord compression in a new acute cord injury model in rat. Surg Neurol. 1978;10:39–43.
10.
go back to reference Lonjon N, Kouyoumdjian P, Prieto M, Bauchet L, Haton H, Gaviria M, et al. Early functional outcomes and histological analysis after spinal cord compression injury in rats: laboratory investigation. J Neurosurg Spine. 2010;12:106–13. doi:10.3171/2009.7.SPINE0989.CrossRefPubMed Lonjon N, Kouyoumdjian P, Prieto M, Bauchet L, Haton H, Gaviria M, et al. Early functional outcomes and histological analysis after spinal cord compression injury in rats: laboratory investigation. J Neurosurg Spine. 2010;12:106–13. doi:10.​3171/​2009.​7.​SPINE0989.CrossRefPubMed
12.
go back to reference Yang T, Wu L, Wang H, Fang J, Yao N, Xu Y. Inflammation level after decompression surgery for a rat model of chronic severe spinal cord compression and effects on ischemia-reperfusion injury. Neurol Med Chir (Tokyo). 2015;55:578–86. doi:10.2176/nmc.oa.2015-0022.CrossRef Yang T, Wu L, Wang H, Fang J, Yao N, Xu Y. Inflammation level after decompression surgery for a rat model of chronic severe spinal cord compression and effects on ischemia-reperfusion injury. Neurol Med Chir (Tokyo). 2015;55:578–86. doi:10.​2176/​nmc.​oa.​2015-0022.CrossRef
14.
go back to reference Hu Y, Wen CY, Li TH, Cheung MM, Wu EX, Luk KD. Somatosensory-evoked potentials as an indicator for the extent of ultrastructural damage of the spinal cord after chronic compressive injuries in a rat model. Clin Neurophysiol. 2011;122:1440–7. doi:10.1016/j.clinph.2010.12.051.CrossRefPubMed Hu Y, Wen CY, Li TH, Cheung MM, Wu EX, Luk KD. Somatosensory-evoked potentials as an indicator for the extent of ultrastructural damage of the spinal cord after chronic compressive injuries in a rat model. Clin Neurophysiol. 2011;122:1440–7. doi:10.​1016/​j.​clinph.​2010.​12.​051.CrossRefPubMed
15.
go back to reference Kouyoumdjian P, Lonjon N, Prieto M, Haton H, Privat A, Asencio G, et al. A remotely controlled model of spinal cord compression injury in mice: toward real-time analysis laboratory. J Neurosurg Spine. 2009;11:461–70. doi:10.3171/2009.4.SPINE0979.CrossRefPubMed Kouyoumdjian P, Lonjon N, Prieto M, Haton H, Privat A, Asencio G, et al. A remotely controlled model of spinal cord compression injury in mice: toward real-time analysis laboratory. J Neurosurg Spine. 2009;11:461–70. doi:10.​3171/​2009.​4.​SPINE0979.CrossRefPubMed
19.
go back to reference Guizar-Sahagun G, Grijalva I, Hernandez-Godinez B, Franco-Bourland RE, Cruz-Antonio L, Martinez-Cruz A, Ibanez-Contreras A, Madrazo I. New approach for graded compression spinal cord injuries in Rhesus macaque: method feasibility and preliminary observations. J Med Primatol. 2011;40(6):401–13. Guizar-Sahagun G, Grijalva I, Hernandez-Godinez B, Franco-Bourland RE, Cruz-Antonio L, Martinez-Cruz A, Ibanez-Contreras A, Madrazo I. New approach for graded compression spinal cord injuries in Rhesus macaque: method feasibility and preliminary observations. J Med Primatol. 2011;40(6):401–13.
20.
go back to reference Dong Y, Miao L, Hei L, Lin L, Ding H. Neuroprotective effects and impact on caspase-12 expression of tauroursodeoxycholic acid after acute spinal cord injury in rats. Int J Clin Exp Pathol. 2015;8:15871–8.PubMedPubMedCentral Dong Y, Miao L, Hei L, Lin L, Ding H. Neuroprotective effects and impact on caspase-12 expression of tauroursodeoxycholic acid after acute spinal cord injury in rats. Int J Clin Exp Pathol. 2015;8:15871–8.PubMedPubMedCentral
23.
go back to reference Bazley FA, Maybhate A, Tan CS, Thakor NV, Kerr C, All AH. Enhancement of bilateral cortical somatosensory evoked potentials to intact forelimb stimulation following thoracic contusion spinal cord injury in rats. IEEE Trans Neural Syst Rehabil Eng. 2014;22:953–64. doi:10.1109/TNSRE.2014.2319313.CrossRefPubMed Bazley FA, Maybhate A, Tan CS, Thakor NV, Kerr C, All AH. Enhancement of bilateral cortical somatosensory evoked potentials to intact forelimb stimulation following thoracic contusion spinal cord injury in rats. IEEE Trans Neural Syst Rehabil Eng. 2014;22:953–64. doi:10.​1109/​TNSRE.​2014.​2319313.CrossRefPubMed
26.
go back to reference Nuwer MR, Dawson EG, Carlson LG, Kanim LE, Sherman JE. Somatosensory evoked potential spinal cord monitoring reduces neurologic deficits after scoliosis surgery: results of a large multicenter survey. Electroencephalogr Clin Neurophysiol. 1995;96:6–11. doi:10.1016/0013-4694(94)00235-D.CrossRefPubMed Nuwer MR, Dawson EG, Carlson LG, Kanim LE, Sherman JE. Somatosensory evoked potential spinal cord monitoring reduces neurologic deficits after scoliosis surgery: results of a large multicenter survey. Electroencephalogr Clin Neurophysiol. 1995;96:6–11. doi:10.​1016/​0013-4694(94)00235-D.CrossRefPubMed
27.
28.
go back to reference Agrawal G, Kerr C, Thakor NV, All AH. Characterization of graded multicenter animal spinal cord injury study contusion spinal cord injury using somatosensory-evoked potentials. Spine (Phila Pa 1976). 2010;35:1122–7. doi:10.1097/BRS.0b013e3181be5fa7.CrossRef Agrawal G, Kerr C, Thakor NV, All AH. Characterization of graded multicenter animal spinal cord injury study contusion spinal cord injury using somatosensory-evoked potentials. Spine (Phila Pa 1976). 2010;35:1122–7. doi:10.​1097/​BRS.​0b013e3181be5fa7​.CrossRef
29.
30.
go back to reference Hu Y, Ding Y, Ruan D, Wong YW, Cheung KM, Luk KD. Prognostic value of somatosensory-evoked potentials in the surgical management of cervical spondylotic myelopathy. Spine (Phila Pa 1976). 2008;33:E305–10. doi:10.1097/BRS.0b013e31816f6c8e.CrossRef Hu Y, Ding Y, Ruan D, Wong YW, Cheung KM, Luk KD. Prognostic value of somatosensory-evoked potentials in the surgical management of cervical spondylotic myelopathy. Spine (Phila Pa 1976). 2008;33:E305–10. doi:10.​1097/​BRS.​0b013e31816f6c8e​.CrossRef
31.
go back to reference Basso DM, Beattie MS, Bresnahan JC, Anderson DK, Faden AI, Gruner JA, et al. MASCIS evaluation of open field locomotor scores: effects of experience and teamwork on reliability. Multicenter Animal Spinal Cord Injury Study. J Neurotrauma. 1996;13:343–59. doi:10.1089/neu.1996.13.343.CrossRefPubMed Basso DM, Beattie MS, Bresnahan JC, Anderson DK, Faden AI, Gruner JA, et al. MASCIS evaluation of open field locomotor scores: effects of experience and teamwork on reliability. Multicenter Animal Spinal Cord Injury Study. J Neurotrauma. 1996;13:343–59. doi:10.​1089/​neu.​1996.​13.​343.CrossRefPubMed
33.
go back to reference Su YF, Lin CL, Lee KS, Tsai TH, Wu SC, Hwang SL, et al. A modified compression model of spinal cord injury in rats: functional assessment and the expression of nitric oxide synthases. Spinal Cord. 2015;53:432–5. doi:10.1038/sc.2014.245.CrossRefPubMed Su YF, Lin CL, Lee KS, Tsai TH, Wu SC, Hwang SL, et al. A modified compression model of spinal cord injury in rats: functional assessment and the expression of nitric oxide synthases. Spinal Cord. 2015;53:432–5. doi:10.​1038/​sc.​2014.​245.CrossRefPubMed
Metadata
Title
What is the optimal sequence of decompression for multilevel noncontinuous spinal cord compression injuries in rabbits?
Authors
Chaohua Yang
Baoqing Yu
Fenfen Ma
Huiping Lu
Jianmin Huang
Qinghua You
Bin Yu
Jianlan Qiao
Jianjun Feng
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Neurology / Issue 1/2017
Electronic ISSN: 1471-2377
DOI
https://doi.org/10.1186/s12883-017-0824-3

Other articles of this Issue 1/2017

BMC Neurology 1/2017 Go to the issue