Skip to main content
Top
Published in: BMC Neurology 1/2015

Open Access 01-12-2015 | Research article

Neuropathological comparisons of amnestic and nonamnestic mild cognitive impairment

Authors: Brittany N. Dugger, Kathryn Davis, Michael Malek-Ahmadi, Joseph G. Hentz, Shawn Sandhu, Thomas G. Beach, Charles H. Adler, Richard J. Caselli, Travis A. Johnson, Geidy E. Serrano, Holly A. Shill, Christine Belden, Erika Driver-Dunckley, John N. Caviness, Lucia I. Sue, Sandra Jacobson, Jessica Powell, Marwan N. Sabbagh

Published in: BMC Neurology | Issue 1/2015

Login to get access

Abstract

Background

Although there are studies investigating the pathologic origins of mild cognitive impairment (MCI), they have revolved around comparisons to normal elderly individuals or those with Alzheimer’s disease (AD) or other dementias. There are few studies directly comparing the comprehensive neuropathology of amnestic (aMCI) and nonamnestic (naMCI) MCI.

Methods

The database of the Brain and Body Donation Program (www.​brainandbodydona​tionprogram.​org), a longitudinal clinicopathological study of normal aging and neurodegenerative disorders, was queried for subjects who were carrying a diagnosis of aMCI or naMCI at the time of autopsy. Neuropathological lesions, including neuritic plaques, neurofibrillary tangles (NFTs), Lewy bodies (LBs), infarcts, cerebral white matter rarefaction (CWMR), cerebral amyloid angiopathy (CAA), and concurrent major clinicopathological diagnoses, including Parkinson’s disease (PD) were analyzed.

Results

Thirty four subjects with aMCI and 15 naMCI met study criteria. Subjects with aMCI were older at death (88 vs. 83 years of age, p = 0.03). Individuals with naMCI had higher densities of LBs within the temporal lobe (p = 0.04) while subjects with aMCI had a propensity for increased NFTs in parietal and temporal lobes (p values = 0.07). After adjusting for age at death, the only significant difference was greater densities of temporal lobe NFTs within the aMCI group. Other regional pathology scores for plaques, NFTs, and LBs were similar between groups. Subjects met clinico-pathological criteria for co-existent PD in 24 % aMCI and 47 % naMCI while neuropathological criteria for AD were met in equal percentages of aMCI and of naMCI cases (53 %); these proportional differences were not significant (p values > 0.35). Furthermore, regardless of amnestic status, there was a greater presence of CAA (71 % of MCI with executive dysfunction vs. 39 % without p = 0.03) and a greater presence of CWMR (81 % of MCI with executive dysfunction and 54 % without p = 0.046) in MCI cases with executive dysfunction.

Conclusions

No single pathologic entity strongly dichotomized MCI groups, perhaps due to the pathologic heterogeneity found within both entities. However, these data suggest the possibility for naMCI to have a propensity for increased LBs and aMCI for increased NFTs in select anatomic regions.
Literature
2.
go back to reference Flicker C, Ferris SH, Reisberg B. Mild cognitive impairment in the elderly: predictors of dementia. Neurology. 1991;41(7):1006–9.PubMed Flicker C, Ferris SH, Reisberg B. Mild cognitive impairment in the elderly: predictors of dementia. Neurology. 1991;41(7):1006–9.PubMed
3.
go back to reference Winblad B, Palmer K, Kivipelto M, Jelic V, Fratiglioni L, Wahlund LO, et al. Mild cognitive impairment--beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. J Intern Med. 2004;256(3):240–6. doi:10.1111/j.1365-2796.2004.01380.x.PubMed Winblad B, Palmer K, Kivipelto M, Jelic V, Fratiglioni L, Wahlund LO, et al. Mild cognitive impairment--beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. J Intern Med. 2004;256(3):240–6. doi:10.​1111/​j.​1365-2796.​2004.​01380.​x.PubMed
4.
go back to reference Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, et al. The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimer Dement. 2011;7(3):270–9. doi:10.1016/j.jalz.2011.03.008. Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, et al. The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimer Dement. 2011;7(3):270–9. doi:10.​1016/​j.​jalz.​2011.​03.​008.
11.
go back to reference Jicha GA, Parisi JE, Dickson DW, Johnson K, Cha R, Ivnik RJ, et al. Neuropathologic outcome of mild cognitive impairment following progression to clinical dementia. Arch Neurol. 2006;63(5):674–81. doi:10.1001/archneur.63.5.674.PubMed Jicha GA, Parisi JE, Dickson DW, Johnson K, Cha R, Ivnik RJ, et al. Neuropathologic outcome of mild cognitive impairment following progression to clinical dementia. Arch Neurol. 2006;63(5):674–81. doi:10.​1001/​archneur.​63.​5.​674.PubMed
13.
go back to reference Galvin JE, Powlishta KK, Wilkins K, McKeel Jr DW, Xiong C, Grant E, et al. Predictors of preclinical Alzheimer disease and dementia: a clinicopathologic study. Arch Neurol. 2005;62(5):758–65. doi:10.1001/archneur.62.5.758.PubMed Galvin JE, Powlishta KK, Wilkins K, McKeel Jr DW, Xiong C, Grant E, et al. Predictors of preclinical Alzheimer disease and dementia: a clinicopathologic study. Arch Neurol. 2005;62(5):758–65. doi:10.​1001/​archneur.​62.​5.​758.PubMed
15.
16.
go back to reference Ellison D. Neuropathology: a reference text of CNS pathology. 2nd ed. Edinburgh, New York: Mosby; 2004. Ellison D. Neuropathology: a reference text of CNS pathology. 2nd ed. Edinburgh, New York: Mosby; 2004.
18.
go back to reference Hixson JE, Vernier DT. Restriction isotyping of human apolipoprotein E by gene amplification and cleavage with HhaI. J Lipid Res. 1990;31(3):545–8.PubMed Hixson JE, Vernier DT. Restriction isotyping of human apolipoprotein E by gene amplification and cleavage with HhaI. J Lipid Res. 1990;31(3):545–8.PubMed
19.
go back to reference Beach TG, Sue LI, Walker DG, Sabbagh MN, Serrano G, Dugger B, et al. Striatal amyloid plaque density predicts Braak neurofibrillary stage and clinicopathological Alzheimer's disease: implications for amyloid imaging. J Alzheimers Dis. 2011;28:869–76. doi:10.3233/JAD-2011-111340. Beach TG, Sue LI, Walker DG, Sabbagh MN, Serrano G, Dugger B, et al. Striatal amyloid plaque density predicts Braak neurofibrillary stage and clinicopathological Alzheimer's disease: implications for amyloid imaging. J Alzheimers Dis. 2011;28:869–76. doi:10.​3233/​JAD-2011-111340.
20.
go back to reference Braak H, Braak E. Demonstration of amyloid deposits and neurofibrillary changes in whole brain sections. Brain Pathol. 1991;1(3):213–6.PubMed Braak H, Braak E. Demonstration of amyloid deposits and neurofibrillary changes in whole brain sections. Brain Pathol. 1991;1(3):213–6.PubMed
21.
go back to reference Beach TG, Adler CH, Lue L, Sue LI, Bachalakuri J, Henry-Watson J, et al. Unified staging system for Lewy body disorders: correlation with nigrostriatal degeneration, cognitive impairment and motor dysfunction. Acta Neuropathologica. 2009;117(6):613–34. doi:10.1007/s00401-009-0538-8.PubMedPubMedCentral Beach TG, Adler CH, Lue L, Sue LI, Bachalakuri J, Henry-Watson J, et al. Unified staging system for Lewy body disorders: correlation with nigrostriatal degeneration, cognitive impairment and motor dysfunction. Acta Neuropathologica. 2009;117(6):613–34. doi:10.​1007/​s00401-009-0538-8.PubMedPubMedCentral
23.
go back to reference Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM, et al. The Consortium to Establish a Registry for Alzheimer's Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer's disease. Neurology. 1991;41(4):479–86.PubMed Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM, et al. The Consortium to Establish a Registry for Alzheimer's Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer's disease. Neurology. 1991;41(4):479–86.PubMed
24.
go back to reference Consensus recommendations for the postmortem diagnosis of Alzheimer's disease. The National Institute on Aging, and Reagan Institute Working Group on Diagnostic Criteria for the Neuropathological Assessment of Alzheimer's Disease. Neurobiol Aging. 1997;18(4 Suppl):S1-2. Consensus recommendations for the postmortem diagnosis of Alzheimer's disease. The National Institute on Aging, and Reagan Institute Working Group on Diagnostic Criteria for the Neuropathological Assessment of Alzheimer's Disease. Neurobiol Aging. 1997;18(4 Suppl):S1-2.
25.
go back to reference Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathologica. 1991;82(4):239–59.PubMed Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathologica. 1991;82(4):239–59.PubMed
31.
go back to reference Sabbagh MN, Shah F, Reid RT, Sue L, Connor DJ, Peterson LK, et al. Pathologic and nicotinic receptor binding differences between mild cognitive impairment, Alzheimer disease, and normal aging. Arch Neurol. 2006;63(12):1771–6. doi:10.1001/archneur.63.12.1771.PubMed Sabbagh MN, Shah F, Reid RT, Sue L, Connor DJ, Peterson LK, et al. Pathologic and nicotinic receptor binding differences between mild cognitive impairment, Alzheimer disease, and normal aging. Arch Neurol. 2006;63(12):1771–6. doi:10.​1001/​archneur.​63.​12.​1771.PubMed
33.
go back to reference White L, Launer L. Relevance of cardiovascular risk factors and ischemic cerebrovascular disease to the pathogenesis of Alzheimer disease: a review of accrued findings from the Honolulu-Asia Aging Study. Alzheimer Dis Assoc Disord. 2006;20(3 Suppl 2):S79–83.PubMed White L, Launer L. Relevance of cardiovascular risk factors and ischemic cerebrovascular disease to the pathogenesis of Alzheimer disease: a review of accrued findings from the Honolulu-Asia Aging Study. Alzheimer Dis Assoc Disord. 2006;20(3 Suppl 2):S79–83.PubMed
34.
go back to reference Hirono N, Kitagaki H, Kazui H, Hashimoto M, Mori E. Impact of white matter changes on clinical manifestation of Alzheimer's disease: A quantitative study. Stroke. 2000;31(9):2182–8.PubMed Hirono N, Kitagaki H, Kazui H, Hashimoto M, Mori E. Impact of white matter changes on clinical manifestation of Alzheimer's disease: A quantitative study. Stroke. 2000;31(9):2182–8.PubMed
35.
go back to reference Roher AE, Kuo YM, Esh C, Knebel C, Weiss N, Kalback W, et al. Cortical and leptomeningeal cerebrovascular amyloid and white matter pathology in Alzheimer's disease. Mol Med. 2003;9(3-4):112–22.PubMedPubMedCentral Roher AE, Kuo YM, Esh C, Knebel C, Weiss N, Kalback W, et al. Cortical and leptomeningeal cerebrovascular amyloid and white matter pathology in Alzheimer's disease. Mol Med. 2003;9(3-4):112–22.PubMedPubMedCentral
37.
go back to reference Devine ME, Fonseca JA, Walker Z. Do cerebral white matter lesions influence the rate of progression from mild cognitive impairment to dementia? Int Psychogeriatr. 2013;25(1):120–7. doi:10.1017/S1041610212000932.PubMed Devine ME, Fonseca JA, Walker Z. Do cerebral white matter lesions influence the rate of progression from mild cognitive impairment to dementia? Int Psychogeriatr. 2013;25(1):120–7. doi:10.​1017/​S104161021200093​2.PubMed
38.
go back to reference Petersen RC, Negash S. Mild cognitive impairment: an overview. CNS Spectr. 2008;13(1):45–53.PubMed Petersen RC, Negash S. Mild cognitive impairment: an overview. CNS Spectr. 2008;13(1):45–53.PubMed
Metadata
Title
Neuropathological comparisons of amnestic and nonamnestic mild cognitive impairment
Authors
Brittany N. Dugger
Kathryn Davis
Michael Malek-Ahmadi
Joseph G. Hentz
Shawn Sandhu
Thomas G. Beach
Charles H. Adler
Richard J. Caselli
Travis A. Johnson
Geidy E. Serrano
Holly A. Shill
Christine Belden
Erika Driver-Dunckley
John N. Caviness
Lucia I. Sue
Sandra Jacobson
Jessica Powell
Marwan N. Sabbagh
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Neurology / Issue 1/2015
Electronic ISSN: 1471-2377
DOI
https://doi.org/10.1186/s12883-015-0403-4

Other articles of this Issue 1/2015

BMC Neurology 1/2015 Go to the issue