Skip to main content
Top
Published in: BMC Nephrology 1/2022

Open Access 01-12-2022 | Research

Identification of key cuproptosis-related genes and their targets in patients with IgAN

Authors: Huagang Lin, Deping Wu, Jing Xiao

Published in: BMC Nephrology | Issue 1/2022

Login to get access

Abstract

Background

IgA nephropathy (IgAN) is one of the most common forms of chronic glomerulonephritis, but the aetiology and pathogenesis remain unclear. Cuproptosis is a newly identified form of cell death that plays an important role in many diseases. Researchers have not clearly determined whether the expression of cuproptosis-related genes (CRGs) is involved in the pathogenesis of IgAN.

Methods

The GSE93798, GSE50469 and GSE37460 datasets containing microarray data from patients with IgAN (63) and healthy controls (31) were downloaded from the GEO database. Immune cells and immune-related functions were analysed in patients with IgAN and controls, and genes were identified that may be related to cuproptosis. A logistic regression model was established according to the results, and then GO and KEGG enrichment analyses were performed. Finally, possible drugs were selected using the DSigDB database.

Results

The subjects in the different groups showed significantly different fractions of immune cells and immune-related functions, and 11 genes related to cuproptosis may be involved in these processes. Based on these 11 genes, the ROC curve was plotted, and the AUC value was calculated (0.898, 95% CI: 0.839–0.958). The result revealed good predictability. Then, genes with P < 0.05 (lipoyltransferase 1, LIPT1) were selected to plot an ROC curve, and the AUC value was calculated (0.729, 95% CI: 0.636–0.821). Enrichment analyses showed that the TCA cycle and multiple metabolic pathways may also be involved in the occurrence of IgAN. Finally, 293 potential drugs that may be used to treat IgAN were identified based on these genes.

Conclusion

In this study, we identified some novel CRGs that may be involved in IgAN, among which LIPT1 was significantly differentially expressed. It may predict the risk of IgAN and provides a possible target for the treatment of IgAN. Further experimental studies are needed to explore how these CRGs mediate the occurrence and development of IgAN.
Literature
1.
go back to reference Berger J, Hinglais N. [Intercapillary deposits of IgA-IgG]. J Urol Nephrol (Paris). 1968;74(9):694–5. Berger J, Hinglais N. [Intercapillary deposits of IgA-IgG]. J Urol Nephrol (Paris). 1968;74(9):694–5.
2.
go back to reference Roberts IS. Pathology of IgA nephropathy. Nat Rev Nephrol. 2014;10(8):445–54. Roberts IS. Pathology of IgA nephropathy. Nat Rev Nephrol. 2014;10(8):445–54.
3.
go back to reference Rovin BH, Adler SG, Barratt J, Bridoux F, Burdge KA, Chan TM, et al. Executive summary of the KDIGO 2021 Guideline for the Management of Glomerular Diseases. Kidney Int. 2021;100(4):753–79.CrossRefPubMed Rovin BH, Adler SG, Barratt J, Bridoux F, Burdge KA, Chan TM, et al. Executive summary of the KDIGO 2021 Guideline for the Management of Glomerular Diseases. Kidney Int. 2021;100(4):753–79.CrossRefPubMed
5.
go back to reference Schena FP, Nistor I. Epidemiology of IgA Nephropathy: A Global Perspective. Semin Nephrol. 2018;38(5):435–42.CrossRefPubMed Schena FP, Nistor I. Epidemiology of IgA Nephropathy: A Global Perspective. Semin Nephrol. 2018;38(5):435–42.CrossRefPubMed
6.
go back to reference Leary SC. Redox regulation of SCO protein function: controlling copper at a mitochondrial crossroad. Antioxid Redox Signal. 2010;13(9):1403–16.CrossRefPubMed Leary SC. Redox regulation of SCO protein function: controlling copper at a mitochondrial crossroad. Antioxid Redox Signal. 2010;13(9):1403–16.CrossRefPubMed
7.
go back to reference Ilyechova EY, Bonaldi E, Orlov IA, Skomorokhova EA, Puchkova LV, Broggini M. CRISP-R/Cas9 Mediated Deletion of Copper Transport Genes CTR1 and DMT1 in NSCLC Cell Line H1299. Biological and Pharmacological Consequences. Cells. 2019;8(4):322. Ilyechova EY, Bonaldi E, Orlov IA, Skomorokhova EA, Puchkova LV, Broggini M. CRISP-R/Cas9 Mediated Deletion of Copper Transport Genes CTR1 and DMT1 in NSCLC Cell Line H1299. Biological and Pharmacological Consequences. Cells. 2019;8(4):322.
8.
go back to reference Cobine PA, Moore SA, Leary SC. Getting out what you put in: Copper in mitochondria and its impacts on human disease. Biochim Biophys Acta Mol Cell Res. 2021;1868(1):118867.CrossRefPubMed Cobine PA, Moore SA, Leary SC. Getting out what you put in: Copper in mitochondria and its impacts on human disease. Biochim Biophys Acta Mol Cell Res. 2021;1868(1):118867.CrossRefPubMed
9.
go back to reference Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science. 2022;375(6586):1254–61.CrossRefPubMedPubMedCentral Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science. 2022;375(6586):1254–61.CrossRefPubMedPubMedCentral
10.
go back to reference Tsvetkov P, Detappe A, Cai K, Keys HR, Brune Z, Ying W, et al. Mitochondrial metabolism promotes adaptation to proteotoxic stress. Nat Chem Biol. 2019;15(7):681–9.CrossRefPubMedPubMedCentral Tsvetkov P, Detappe A, Cai K, Keys HR, Brune Z, Ying W, et al. Mitochondrial metabolism promotes adaptation to proteotoxic stress. Nat Chem Biol. 2019;15(7):681–9.CrossRefPubMedPubMedCentral
11.
go back to reference Tsai YL, Hua KF, Chen A, Wei CW, Chen WS, Wu CY, et al. NLRP3 inflammasome: Pathogenic role and potential therapeutic target for IgA nephropathy. Sci Rep. 2017;7:41123.CrossRefPubMedPubMedCentral Tsai YL, Hua KF, Chen A, Wei CW, Chen WS, Wu CY, et al. NLRP3 inflammasome: Pathogenic role and potential therapeutic target for IgA nephropathy. Sci Rep. 2017;7:41123.CrossRefPubMedPubMedCentral
12.
go back to reference Ni M, Solmonson A, Pan C, Yang C, Li D, Notzon A, et al. Functional Assessment of Lipoyltransferase-1 Deficiency in Cells, Mice, and Humans. Cell Rep. 2019;27(5):1376–86.e6.CrossRefPubMedPubMedCentral Ni M, Solmonson A, Pan C, Yang C, Li D, Notzon A, et al. Functional Assessment of Lipoyltransferase-1 Deficiency in Cells, Mice, and Humans. Cell Rep. 2019;27(5):1376–86.e6.CrossRefPubMedPubMedCentral
13.
go back to reference Bhandari G, Tiwari V, Gupta A, Gupta P, Bhargava V, Malik M, et al. IgA Nephropathy with Wilson’s Disease: A Case Report and Literature Review. Indian J Nephrol. 2021;31(5):474–7.CrossRefPubMedPubMedCentral Bhandari G, Tiwari V, Gupta A, Gupta P, Bhargava V, Malik M, et al. IgA Nephropathy with Wilson’s Disease: A Case Report and Literature Review. Indian J Nephrol. 2021;31(5):474–7.CrossRefPubMedPubMedCentral
14.
go back to reference Coppo R, Amore A, Peruzzi L, Vergano L, Camilla R. Innate immunity and IgA nephropathy. J Nephrol. 2010;23(6):626–32.PubMed Coppo R, Amore A, Peruzzi L, Vergano L, Camilla R. Innate immunity and IgA nephropathy. J Nephrol. 2010;23(6):626–32.PubMed
15.
go back to reference Rifai A. IgA nephropathy: immune mechanisms beyond IgA mesangial deposition. Kidney Int. 2007;72(3):239–41.CrossRefPubMed Rifai A. IgA nephropathy: immune mechanisms beyond IgA mesangial deposition. Kidney Int. 2007;72(3):239–41.CrossRefPubMed
16.
go back to reference Rajasekaran A, Julian BA, Rizk DV. IgA Nephropathy: An Interesting Autoimmune Kidney Disease. Am J Med Sci. 2021;361(2):176–94.CrossRefPubMed Rajasekaran A, Julian BA, Rizk DV. IgA Nephropathy: An Interesting Autoimmune Kidney Disease. Am J Med Sci. 2021;361(2):176–94.CrossRefPubMed
17.
go back to reference Pattrapornpisut P, Avila-Casado C, Reich HN. IgA Nephropathy: Core Curriculum 2021. Am J Kidney Dis. 2021;78(3):429–41.CrossRefPubMed Pattrapornpisut P, Avila-Casado C, Reich HN. IgA Nephropathy: Core Curriculum 2021. Am J Kidney Dis. 2021;78(3):429–41.CrossRefPubMed
18.
go back to reference Gale DP, Molyneux K, Wimbury D, Higgins P, Levine AP, Caplin B, et al. Galactosylation of IgA1 Is Associated with Common Variation in C1GALT1. J Am Soc Nephrol. 2017;28(7):2158–66.CrossRefPubMedPubMedCentral Gale DP, Molyneux K, Wimbury D, Higgins P, Levine AP, Caplin B, et al. Galactosylation of IgA1 Is Associated with Common Variation in C1GALT1. J Am Soc Nephrol. 2017;28(7):2158–66.CrossRefPubMedPubMedCentral
19.
go back to reference Esteve Cols C, Graterol Torres FA, Quirant Sánchez B, et al. Immunological Pattern in IgA Nephropathy. Int J Mol Sci. 2020;21(4):1389. Esteve Cols C, Graterol Torres FA, Quirant Sánchez B, et al. Immunological Pattern in IgA Nephropathy. Int J Mol Sci. 2020;21(4):1389.
20.
go back to reference Good KL, Avery DT, Tangye SG. Resting human memory B cells are intrinsically programmed for enhanced survival and responsiveness to diverse stimuli compared to naive B cells. J Immunol. 2009;182(2):890–901.CrossRefPubMed Good KL, Avery DT, Tangye SG. Resting human memory B cells are intrinsically programmed for enhanced survival and responsiveness to diverse stimuli compared to naive B cells. J Immunol. 2009;182(2):890–901.CrossRefPubMed
21.
go back to reference Stavnezer J, Kang J. The surprising discovery that TGF beta specifically induces the IgA class switch. J Immunol. 2009;182(1):5–7.CrossRefPubMed Stavnezer J, Kang J. The surprising discovery that TGF beta specifically induces the IgA class switch. J Immunol. 2009;182(1):5–7.CrossRefPubMed
22.
go back to reference Chang S, Li XK. The Role of Immune Modulation in Pathogenesis of IgA Nephropathy. Front Med (Lausanne). 2020;7:92.CrossRef Chang S, Li XK. The Role of Immune Modulation in Pathogenesis of IgA Nephropathy. Front Med (Lausanne). 2020;7:92.CrossRef
23.
go back to reference Ikezumi Y, Suzuki T, Imai N, Ueno M, Narita I, Kawachi H, et al. Histological differences in new-onset IgA nephropathy between children and adults. Nephrol Dial Transplant. 2006;21(12):3466–74.CrossRefPubMed Ikezumi Y, Suzuki T, Imai N, Ueno M, Narita I, Kawachi H, et al. Histological differences in new-onset IgA nephropathy between children and adults. Nephrol Dial Transplant. 2006;21(12):3466–74.CrossRefPubMed
24.
go back to reference Kawasaki Y, Suyama K, Miyazaki K, Kanno S, Ono A, Suzuki Y, et al. Resistance factors for the treatment of immunoglobulin A nephropathy with diffuse mesangial proliferation. Nephrol (Carlton). 2014;19(7):384–91.CrossRef Kawasaki Y, Suyama K, Miyazaki K, Kanno S, Ono A, Suzuki Y, et al. Resistance factors for the treatment of immunoglobulin A nephropathy with diffuse mesangial proliferation. Nephrol (Carlton). 2014;19(7):384–91.CrossRef
25.
go back to reference Dai Q, Liu J, Du YL, Hao X, Ying J, Tan Y, et al. Histone deacetylase inhibitors attenuate P-aIgA1-induced cell proliferation and extracellular matrix synthesis in human renal mesangial cells in vitro. Acta Pharmacol Sin. 2016;37(2):228–34.CrossRefPubMedPubMedCentral Dai Q, Liu J, Du YL, Hao X, Ying J, Tan Y, et al. Histone deacetylase inhibitors attenuate P-aIgA1-induced cell proliferation and extracellular matrix synthesis in human renal mesangial cells in vitro. Acta Pharmacol Sin. 2016;37(2):228–34.CrossRefPubMedPubMedCentral
26.
go back to reference Dineley KE, Votyakova TV, Reynolds IJ. Zinc inhibition of cellular energy production: implications for mitochondria and neurodegeneration. J Neurochem. 2003;85(3):563–70.CrossRefPubMed Dineley KE, Votyakova TV, Reynolds IJ. Zinc inhibition of cellular energy production: implications for mitochondria and neurodegeneration. J Neurochem. 2003;85(3):563–70.CrossRefPubMed
27.
go back to reference Du W, Gu M, Hu M, Pinchi P, Chen W, Ryan M, et al. Lysosomal Zn(2+) release triggers rapid, mitochondria-mediated, non-apoptotic cell death in metastatic melanoma. Cell Rep. 2021;37(3):109848.CrossRefPubMedPubMedCentral Du W, Gu M, Hu M, Pinchi P, Chen W, Ryan M, et al. Lysosomal Zn(2+) release triggers rapid, mitochondria-mediated, non-apoptotic cell death in metastatic melanoma. Cell Rep. 2021;37(3):109848.CrossRefPubMedPubMedCentral
28.
go back to reference Kagan VE, Mao G, Qu F, Angeli JP, Doll S, Croix CS, et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol. 2017;13(1):81–90.CrossRefPubMed Kagan VE, Mao G, Qu F, Angeli JP, Doll S, Croix CS, et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol. 2017;13(1):81–90.CrossRefPubMed
29.
go back to reference Ge EJ, Bush AI, Casini A, Cobine PA, Cross JR, DeNicola GM, et al. Connecting copper and cancer: from transition metal signalling to metalloplasia. Nat Rev Cancer. 2022;22(2):102–13.CrossRefPubMed Ge EJ, Bush AI, Casini A, Cobine PA, Cross JR, DeNicola GM, et al. Connecting copper and cancer: from transition metal signalling to metalloplasia. Nat Rev Cancer. 2022;22(2):102–13.CrossRefPubMed
30.
go back to reference O’Day SJ, Eggermont AM, Chiarion-Sileni V, Kefford R, Grob JJ, Mortier L, et al. Final results of phase III SYMMETRY study: randomized, double-blind trial of elesclomol plus paclitaxel versus paclitaxel alone as treatment for chemotherapy-naive patients with advanced melanoma. J Clin Oncol. 2013;31(9):1211–8.CrossRefPubMed O’Day SJ, Eggermont AM, Chiarion-Sileni V, Kefford R, Grob JJ, Mortier L, et al. Final results of phase III SYMMETRY study: randomized, double-blind trial of elesclomol plus paclitaxel versus paclitaxel alone as treatment for chemotherapy-naive patients with advanced melanoma. J Clin Oncol. 2013;31(9):1211–8.CrossRefPubMed
31.
go back to reference Monk BJ, Kauderer JT, Moxley KM, Bonebrake AJ, Dewdney SB, Secord AA, et al. A phase II evaluation of elesclomol sodium and weekly paclitaxel in the treatment of recurrent or persistent platinum-resistant ovarian, fallopian tube or primary peritoneal cancer: An NRG oncology/gynecologic oncology group study. Gynecol Oncol. 2018;151(3):422–7.CrossRefPubMedPubMedCentral Monk BJ, Kauderer JT, Moxley KM, Bonebrake AJ, Dewdney SB, Secord AA, et al. A phase II evaluation of elesclomol sodium and weekly paclitaxel in the treatment of recurrent or persistent platinum-resistant ovarian, fallopian tube or primary peritoneal cancer: An NRG oncology/gynecologic oncology group study. Gynecol Oncol. 2018;151(3):422–7.CrossRefPubMedPubMedCentral
32.
go back to reference Tang D, Chen X, Kroemer G. Cuproptosis: a copper-triggered modality of mitochondrial cell death. Cell Res. 2022;32(5):417–8.CrossRefPubMed Tang D, Chen X, Kroemer G. Cuproptosis: a copper-triggered modality of mitochondrial cell death. Cell Res. 2022;32(5):417–8.CrossRefPubMed
33.
go back to reference Liao J, Yang F, Bai Y, Yu W, Qiao N, Han Q, et al. Metabolomics analysis reveals the effects of copper on mitochondria-mediated apoptosis in kidney of broiler chicken (Gallus gallus). J Inorg Biochem. 2021;224:111581.CrossRefPubMed Liao J, Yang F, Bai Y, Yu W, Qiao N, Han Q, et al. Metabolomics analysis reveals the effects of copper on mitochondria-mediated apoptosis in kidney of broiler chicken (Gallus gallus). J Inorg Biochem. 2021;224:111581.CrossRefPubMed
34.
go back to reference Liao J, Yang F, Yu W, Qiao N, Zhang H, Han Q, et al. Copper induces energy metabolic dysfunction and AMPK-mTOR pathway-mediated autophagy in kidney of broiler chickens. Ecotoxicol Environ Saf. 2020;206:111366.CrossRefPubMed Liao J, Yang F, Yu W, Qiao N, Zhang H, Han Q, et al. Copper induces energy metabolic dysfunction and AMPK-mTOR pathway-mediated autophagy in kidney of broiler chickens. Ecotoxicol Environ Saf. 2020;206:111366.CrossRefPubMed
35.
go back to reference Niu YY, Zhang YY, Zhu Z, Zhang XQ, Liu X, Zhu SY, et al. Elevated intracellular copper contributes a unique role to kidney fibrosis by lysyl oxidase mediated matrix crosslinking. Cell Death Dis. 2020;11(3):211.CrossRefPubMedPubMedCentral Niu YY, Zhang YY, Zhu Z, Zhang XQ, Liu X, Zhu SY, et al. Elevated intracellular copper contributes a unique role to kidney fibrosis by lysyl oxidase mediated matrix crosslinking. Cell Death Dis. 2020;11(3):211.CrossRefPubMedPubMedCentral
36.
go back to reference Wan F, Zhong G, Ning Z, Liao J, Yu W, Wang C, et al. Long-term exposure to copper induces autophagy and apoptosis through oxidative stress in rat kidneys. Ecotoxicol Environ Saf. 2020;190:110158.CrossRefPubMed Wan F, Zhong G, Ning Z, Liao J, Yu W, Wang C, et al. Long-term exposure to copper induces autophagy and apoptosis through oxidative stress in rat kidneys. Ecotoxicol Environ Saf. 2020;190:110158.CrossRefPubMed
37.
go back to reference Khairnar SI, Mahajan UB, Patil KR, Patel HM, Shinde SD, Goyal SN, et al. Disulfiram and Its Copper Chelate Attenuate Cisplatin-Induced Acute Nephrotoxicity in Rats Via Reduction of Oxidative Stress and Inflammation. Biol Trace Elem Res. 2020;193(1):174–84.CrossRefPubMed Khairnar SI, Mahajan UB, Patil KR, Patel HM, Shinde SD, Goyal SN, et al. Disulfiram and Its Copper Chelate Attenuate Cisplatin-Induced Acute Nephrotoxicity in Rats Via Reduction of Oxidative Stress and Inflammation. Biol Trace Elem Res. 2020;193(1):174–84.CrossRefPubMed
Metadata
Title
Identification of key cuproptosis-related genes and their targets in patients with IgAN
Authors
Huagang Lin
Deping Wu
Jing Xiao
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Nephrology / Issue 1/2022
Electronic ISSN: 1471-2369
DOI
https://doi.org/10.1186/s12882-022-02991-5

Other articles of this Issue 1/2022

BMC Nephrology 1/2022 Go to the issue