Skip to main content
Top
Published in: BMC Nephrology 1/2022

Open Access 01-12-2022 | Polycystic Kidney Disease | Research

A disease progression model estimating the benefit of tolvaptan on time to end-stage renal disease for patients with rapidly progressing autosomal dominant polycystic kidney disease

Authors: Gregory Mader, Deirdre Mladsi, Myrlene Sanon, Molly Purser, Christine L. Barnett, Dorothee Oberdhan, Terry Watnick, Stephen Seliger

Published in: BMC Nephrology | Issue 1/2022

Login to get access

Abstract

Background

Tolvaptan was approved in the United States in 2018 for patients with autosomal dominant polycystic kidney disease (ADPKD) at risk of rapid progression as assessed in a 3-year phase 3 clinical trial (TEMPO 3:4). An extension study (TEMPO 4:4) showed continued delay in progression at 2 years, and a trial in patients with later-stage disease (REPRISE) provided confirmatory evidence of efficacy. Given the relatively shorter-term duration of the clinical trials, estimating the longer-term benefit associated with tolvaptan via extrapolation of the treatment effect is an important undertaking.

Methods

A model was developed to simulate a cohort of patients with ADPKD at risk of rapid progression and predict their long-term outcomes using an algorithm organized around the Mayo Risk Classification system, which has five subclasses (1A through 1E) based on estimated kidney growth rates. The model base-case population represents 1280 patients enrolled in TEMPO 3:4 beginning in chronic kidney disease (CKD) stages G1, G2, and G3 across Mayo subclasses 1C, 1D, and 1E. The algorithm was used to predict longer-term natural history health outcomes. The estimated treatment effect of tolvaptan from TEMPO 3:4 was applied to the natural history to predict the longer-term treatment benefit of tolvaptan. For the cohort, analyzed once reflecting natural history and once assuming treatment with tolvaptan, the model estimated lifetime progression through CKD stages, end-stage renal disease (ESRD), and death.

Results

When treated with tolvaptan, the model cohort was predicted to experience a 3.1-year delay of ESRD (95% confidence interval: 1.8 to 4.4), approximately a 23% improvement over the estimated 13.7 years for patients not receiving tolvaptan. Patients beginning tolvaptan treatment in CKD stages G1, G2, and G3 were predicted to experience estimated delays of ESRD, compared with patients not receiving tolvaptan, of 3.8 years (21% improvement), 3.0 years (24% improvement), and 2.1 years (28% improvement), respectively.

Conclusions

The model estimated that patients treated with tolvaptan versus no treatment spent more time in earlier CKD stages and had later onset of ESRD. Findings highlight the potential long-term value of early intervention with tolvaptan in patients at risk of rapid ADPKD progression.
Appendix
Available only for authorised users
Literature
1.
go back to reference Belibi FA, Reif G, Wallace DP, Yamaguchi T, Olsen L, Li H, et al. Cyclic AMP promotes growth and secretion in human polycystic kidney epithelial cells. Kidney Int. 2004;66(3):964–73.CrossRef Belibi FA, Reif G, Wallace DP, Yamaguchi T, Olsen L, Li H, et al. Cyclic AMP promotes growth and secretion in human polycystic kidney epithelial cells. Kidney Int. 2004;66(3):964–73.CrossRef
2.
go back to reference Reule S, Sexton DJ, Solid CA, Chen SC, Collins AJ, Foley RN. ESRD from autosomal dominant polycystic kidney disease in the United States, 2001-2010. Am J Kidney Dis. 2014;64(4):592–9.CrossRef Reule S, Sexton DJ, Solid CA, Chen SC, Collins AJ, Foley RN. ESRD from autosomal dominant polycystic kidney disease in the United States, 2001-2010. Am J Kidney Dis. 2014;64(4):592–9.CrossRef
3.
go back to reference Chebib FT, Torres VE. Autosomal dominant polycystic kidney disease: core curriculum 2016. Am J Kidney Dis. 2016;67(5):792–810.CrossRef Chebib FT, Torres VE. Autosomal dominant polycystic kidney disease: core curriculum 2016. Am J Kidney Dis. 2016;67(5):792–810.CrossRef
4.
go back to reference Spithoven EM, Kramer A, Meijer E, Orskov B, Wanner C, Caskey F, et al. Analysis of data from the ERA-EDTA registry indicates that conventional treatments for chronic kidney disease do not reduce the need for renal replacement therapy in autosomal dominant polycystic kidney disease. Kidney Int. 2014;86(6):1244–52.CrossRef Spithoven EM, Kramer A, Meijer E, Orskov B, Wanner C, Caskey F, et al. Analysis of data from the ERA-EDTA registry indicates that conventional treatments for chronic kidney disease do not reduce the need for renal replacement therapy in autosomal dominant polycystic kidney disease. Kidney Int. 2014;86(6):1244–52.CrossRef
6.
go back to reference Gansevoort RT, Arici M, Benzing T, Birn H, Capasso G, Covic A, et al. Recommendations for the use of tolvaptan in autosomal dominant polycystic kidney disease: a position statement on behalf of the ERA-EDTA working groups on inherited kidney disorders and European renal best practice. Nephrol Dial Transplant. 2016;31(3):337–48.CrossRef Gansevoort RT, Arici M, Benzing T, Birn H, Capasso G, Covic A, et al. Recommendations for the use of tolvaptan in autosomal dominant polycystic kidney disease: a position statement on behalf of the ERA-EDTA working groups on inherited kidney disorders and European renal best practice. Nephrol Dial Transplant. 2016;31(3):337–48.CrossRef
7.
go back to reference Torres VE, Chapman AB, Devuyst O, Gansevoort RT, Grantham JJ, Higashihara E, et al. Tolvaptan in patients with autosomal dominant polycystic kidney disease. N Engl J Med. 2012;367(25):2407–18.CrossRef Torres VE, Chapman AB, Devuyst O, Gansevoort RT, Grantham JJ, Higashihara E, et al. Tolvaptan in patients with autosomal dominant polycystic kidney disease. N Engl J Med. 2012;367(25):2407–18.CrossRef
8.
go back to reference Torres VE, Chapman AB, Devuyst O, Gansevoort RT, Perrone RD, Dandurand A, et al. Multicenter, open-label, extension trial to evaluate the long-term efficacy and safety of early versus delayed treatment with tolvaptan in autosomal dominant polycystic kidney disease: the TEMPO 4:4 trial. Nephrol Dial Transplant. 2017;32(7):1262.CrossRef Torres VE, Chapman AB, Devuyst O, Gansevoort RT, Perrone RD, Dandurand A, et al. Multicenter, open-label, extension trial to evaluate the long-term efficacy and safety of early versus delayed treatment with tolvaptan in autosomal dominant polycystic kidney disease: the TEMPO 4:4 trial. Nephrol Dial Transplant. 2017;32(7):1262.CrossRef
9.
go back to reference Torres VE, Devuyst O, Chapman AB, Gansevoort RT, Perrone RD, Ouyang J, et al. Rationale and design of a clinical trial investigating tolvaptan safety and efficacy in autosomal dominant polycystic kidney disease. Am J Nephrol. 2017;45(3):257–66.CrossRef Torres VE, Devuyst O, Chapman AB, Gansevoort RT, Perrone RD, Ouyang J, et al. Rationale and design of a clinical trial investigating tolvaptan safety and efficacy in autosomal dominant polycystic kidney disease. Am J Nephrol. 2017;45(3):257–66.CrossRef
10.
go back to reference Thong KM, Ong AC. The natural history of autosomal dominant polycystic kidney disease: 30-year experience from a single centre. QJM. 2013;106(7):639–46.CrossRef Thong KM, Ong AC. The natural history of autosomal dominant polycystic kidney disease: 30-year experience from a single centre. QJM. 2013;106(7):639–46.CrossRef
11.
go back to reference Irazabal MV, Rangel LJ, Bergstralh EJ, Osborn SL, Harmon AJ, Sundsbak JL, et al. Imaging classification of autosomal dominant polycystic kidney disease: a simple model for selecting patients for clinical trials. J Am Soc Nephrol. 2015;26(1):160–72.CrossRef Irazabal MV, Rangel LJ, Bergstralh EJ, Osborn SL, Harmon AJ, Sundsbak JL, et al. Imaging classification of autosomal dominant polycystic kidney disease: a simple model for selecting patients for clinical trials. J Am Soc Nephrol. 2015;26(1):160–72.CrossRef
12.
go back to reference Futoma J, Sendak M, Cameron B, Heller K. Predicting disease progression with a model for multivariate longitudinal clinical data. Proc Mach Learn Res. 2016;56:42–54. Futoma J, Sendak M, Cameron B, Heller K. Predicting disease progression with a model for multivariate longitudinal clinical data. Proc Mach Learn Res. 2016;56:42–54.
13.
go back to reference Chebib FT, Perrone RD, Chapman AB, Dahl NK, Harris PC, Mrug M, et al. A practical guide for treatment of rapidly progressive ADPKD with tolvaptan. J Am Soc Nephrol. 2018;29(10):2458–70.CrossRef Chebib FT, Perrone RD, Chapman AB, Dahl NK, Harris PC, Mrug M, et al. A practical guide for treatment of rapidly progressive ADPKD with tolvaptan. J Am Soc Nephrol. 2018;29(10):2458–70.CrossRef
14.
go back to reference Yu ASL, Shen C, Landsittel DP, Grantham JJ, Cook LT, Torres VE, et al. Long-term trajectory of kidney function in autosomal-dominant polycystic kidney disease. Kidney Int. 2019;95(5):1253–61.CrossRef Yu ASL, Shen C, Landsittel DP, Grantham JJ, Cook LT, Torres VE, et al. Long-term trajectory of kidney function in autosomal-dominant polycystic kidney disease. Kidney Int. 2019;95(5):1253–61.CrossRef
15.
go back to reference Soroka S, Alam A, Bevilacqua M, Girard LP, Komenda P, Loertscher R, et al. Updated Canadian expert consensus on assessing risk of disease progression and pharmacological management of autosomal dominant polycystic kidney disease. Can J Kidney Health Dis. 2018;5:2054358118801589.CrossRef Soroka S, Alam A, Bevilacqua M, Girard LP, Komenda P, Loertscher R, et al. Updated Canadian expert consensus on assessing risk of disease progression and pharmacological management of autosomal dominant polycystic kidney disease. Can J Kidney Health Dis. 2018;5:2054358118801589.CrossRef
16.
go back to reference Irazabal MV, Blais JD, Perrone RD, Gansevoort RT, Chapman AB, Devuyst O, et al. Prognostic enrichment design in clinical trials for autosomal dominant polycystic kidney disease: the TEMPO 3:4 clinical trial. Kidney Int Rep. 2016;1(4):213–20.CrossRef Irazabal MV, Blais JD, Perrone RD, Gansevoort RT, Chapman AB, Devuyst O, et al. Prognostic enrichment design in clinical trials for autosomal dominant polycystic kidney disease: the TEMPO 3:4 clinical trial. Kidney Int Rep. 2016;1(4):213–20.CrossRef
17.
go back to reference Erickson KF, Chertow GM, Goldhaber-Fiebert JD. Cost-effectiveness of tolvaptan in autosomal dominant polycystic kidney disease. Ann Intern Med. 2013;159(6):382–9.CrossRef Erickson KF, Chertow GM, Goldhaber-Fiebert JD. Cost-effectiveness of tolvaptan in autosomal dominant polycystic kidney disease. Ann Intern Med. 2013;159(6):382–9.CrossRef
18.
go back to reference McEwan P, Bennett Wilton H, Ong ACM, Orskov B, Sandford R, Scolari F, et al. A model to predict disease progression in patients with autosomal dominant polycystic kidney disease (ADPKD): the ADPKD outcomes model. BMC Nephrol. 2018;19(1):37.CrossRef McEwan P, Bennett Wilton H, Ong ACM, Orskov B, Sandford R, Scolari F, et al. A model to predict disease progression in patients with autosomal dominant polycystic kidney disease (ADPKD): the ADPKD outcomes model. BMC Nephrol. 2018;19(1):37.CrossRef
19.
go back to reference Bennett H, McEwan P, Hamilton K, O'Reilly K. Modelling the long-term benefits of tolvaptan therapy on renal function decline in autosomal dominant polycystic kidney disease: an exploratory analysis using the ADPKD outcomes model. BMC Nephrol. 2019;20(1):136.CrossRef Bennett H, McEwan P, Hamilton K, O'Reilly K. Modelling the long-term benefits of tolvaptan therapy on renal function decline in autosomal dominant polycystic kidney disease: an exploratory analysis using the ADPKD outcomes model. BMC Nephrol. 2019;20(1):136.CrossRef
20.
go back to reference Kidney Disease Improving Global Outcomes (KDIGO). KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Chapter 1: Definition and classification of CKD. Kidney Int Suppl. 2013;3:19–62. Kidney Disease Improving Global Outcomes (KDIGO). KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Chapter 1: Definition and classification of CKD. Kidney Int Suppl. 2013;3:19–62.
21.
go back to reference Torres VE, Higashihara E, Devuyst O, Chapman AB, Gansevoort RT, Grantham JJ, et al. Effect of Tolvaptan in autosomal dominant polycystic kidney disease by CKD stage: results from the TEMPO 3:4 trial. Clin J Am Soc Nephrol. 2016;11(5):803–11.CrossRef Torres VE, Higashihara E, Devuyst O, Chapman AB, Gansevoort RT, Grantham JJ, et al. Effect of Tolvaptan in autosomal dominant polycystic kidney disease by CKD stage: results from the TEMPO 3:4 trial. Clin J Am Soc Nephrol. 2016;11(5):803–11.CrossRef
22.
go back to reference United States Renal Data System. Chapter 3: Morbidity & Mortality in Patients with CKD. In: USRDS 2017 Annual Data Report. Volume 1 CKD in the US; 2017. United States Renal Data System. Chapter 3: Morbidity & Mortality in Patients with CKD. In: USRDS 2017 Annual Data Report. Volume 1 CKD in the US; 2017.
23.
go back to reference United States Renal Data System. Chapter 5: Mortality. In: USRDS 2017 Annual Data Report. Volume 2 End-stage Renal Disease in the United States; 2017. United States Renal Data System. Chapter 5: Mortality. In: USRDS 2017 Annual Data Report. Volume 2 End-stage Renal Disease in the United States; 2017.
24.
go back to reference Arias E, Heron MP, Xu J. United States life tables, 2013. In: National vital statisitcis reports. Edited by (U.S.) NCfHS, vol. 66; 2017. p. 1–64. Arias E, Heron MP, Xu J. United States life tables, 2013. In: National vital statisitcis reports. Edited by (U.S.) NCfHS, vol. 66; 2017. p. 1–64.
25.
go back to reference Schrier RW, McFann KK, Johnson AM. Epidemiological study of kidney survival in autosomal dominant polycystic kidney disease. Kidney Int. 2003;63(2):678–85.CrossRef Schrier RW, McFann KK, Johnson AM. Epidemiological study of kidney survival in autosomal dominant polycystic kidney disease. Kidney Int. 2003;63(2):678–85.CrossRef
26.
go back to reference Knight T, Schaefer C, Krasa H, Oberdhan D, Chapman A, Perrone RD. Medical resource utilization and costs associated with autosomal dominant polycystic kidney disease in the USA: a retrospective matched cohort analysis of private insurer data. Clinicoecon Outcomes Res. 2015;7:123–32.CrossRef Knight T, Schaefer C, Krasa H, Oberdhan D, Chapman A, Perrone RD. Medical resource utilization and costs associated with autosomal dominant polycystic kidney disease in the USA: a retrospective matched cohort analysis of private insurer data. Clinicoecon Outcomes Res. 2015;7:123–32.CrossRef
27.
go back to reference Golestaneh L, Alvarez PJ, Reaven NL, Funk SE, McGaughey KJ, Romero A, et al. All-cause costs increase exponentially with increased chronic kidney disease stage. Am J Manag Care. 2017;23(10 Suppl):S163–72.PubMed Golestaneh L, Alvarez PJ, Reaven NL, Funk SE, McGaughey KJ, Romero A, et al. All-cause costs increase exponentially with increased chronic kidney disease stage. Am J Manag Care. 2017;23(10 Suppl):S163–72.PubMed
28.
go back to reference Lee AJ, Morgan CL, Conway P, Currie CJ. Characterisation and comparison of health-related quality of life for patients with renal failure. Curr Med Res Opin. 2005;21(11):1777–83.CrossRef Lee AJ, Morgan CL, Conway P, Currie CJ. Characterisation and comparison of health-related quality of life for patients with renal failure. Curr Med Res Opin. 2005;21(11):1777–83.CrossRef
29.
go back to reference Lentine KL, Xiao H, Machnicki G, Gheorghian A, Schnitzler MA. Renal function and healthcare costs in patients with polycystic kidney disease. Clin J Am Soc Nephrol. 2010;5(8):1471–9.CrossRef Lentine KL, Xiao H, Machnicki G, Gheorghian A, Schnitzler MA. Renal function and healthcare costs in patients with polycystic kidney disease. Clin J Am Soc Nephrol. 2010;5(8):1471–9.CrossRef
Metadata
Title
A disease progression model estimating the benefit of tolvaptan on time to end-stage renal disease for patients with rapidly progressing autosomal dominant polycystic kidney disease
Authors
Gregory Mader
Deirdre Mladsi
Myrlene Sanon
Molly Purser
Christine L. Barnett
Dorothee Oberdhan
Terry Watnick
Stephen Seliger
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Nephrology / Issue 1/2022
Electronic ISSN: 1471-2369
DOI
https://doi.org/10.1186/s12882-022-02956-8

Other articles of this Issue 1/2022

BMC Nephrology 1/2022 Go to the issue