Skip to main content
Top
Published in: BMC Nephrology 1/2022

Open Access 01-12-2022 | Erythropoietin | Research

A potential link between AQP3 and SLC14A1 gene expression level and clinical parameters of maintenance hemodialysis patients

Authors: Rafał Zwiech, Agnieszka Bruzda-Zwiech, Ewa Balcerczak, Joanna Szczepańska, Adrian Krygier, Beata Małachowska, Dominika Michałek, Dagmara Szmajda-Krygier

Published in: BMC Nephrology | Issue 1/2022

Login to get access

Abstract

Background

The transport of water and urea through the erythrocyte membrane is facilitated by aquaporins such as aquaglyceroporin (AQP3), and type B urea transporters (UT-B). As they may play an important role in osmotic balance of maintenance hemodialysis (HD) patients, the aim of the present study was to determine whether any relationship exists between the expression of their genes and the biochemical / clinical parameters in HD patients.

Methods

AQP3 and UT-B (SLC14A1) gene expression was evaluated using RT-qPCR analysis in 76 HD patients and 35 participants with no kidney failure.

Results

The HD group demonstrated significantly higher median expression of AQP3 and UT-B (Z = 2.16; P = 0.03 and Z = 8.82; p < 0.0001, respectively) than controls. AQP3 negatively correlated with pre-dialysis urea serum concentration (R = -0.22; P = 0.049) and sodium gradient (R = -0.31; P = 0.04); however, no significant UT-B correlations were observed. Regarding the cause of end-stage kidney disease, AQP3 expression positively correlated with erythropoietin dosages in the chronic glomerulonephritis (GN) subgroup (R = 0.6; P = 0.003), but negatively in the diabetic nephropathy subgroup (R = -0.59; P = 0.004). UT-B positively correlated with inter-dialytic weight gain% in the GN subgroup (R = 0.47; P = 0.03).

Conclusion

Maintenance hemodialysis seems significantly modify AQP3 and UT-B expression but their link to clinical and biochemical parameters needs further large-scale evaluation.
Literature
1.
go back to reference Vanholder R, Pletinck A, Schepers E, Glorieux G. Biochemical and clinical impact of organic uremic retention solutes: a comprehensive update. Toxins. 2018;10(1):33.PubMedCentralCrossRef Vanholder R, Pletinck A, Schepers E, Glorieux G. Biochemical and clinical impact of organic uremic retention solutes: a comprehensive update. Toxins. 2018;10(1):33.PubMedCentralCrossRef
2.
go back to reference Saran R, Robinson B, Abbott KC, Agodoa LYC, Bragg-Gresham J, Balkrishnan R, et al. US Renal Data System 2018 Annual Data Report: Epidemiology of Kidney Disease in the United States. Am J Kidney Dis. 2019;73(3 Suppl 1):A7–A8. Saran R, Robinson B, Abbott KC, Agodoa LYC, Bragg-Gresham J, Balkrishnan R, et al. US Renal Data System 2018 Annual Data Report: Epidemiology of Kidney Disease in the United States. Am J Kidney Dis. 2019;73(3 Suppl 1):A7–A8.
3.
go back to reference Bello AK, Levin A, Lunney M, Osman MA, Ye F, Ashuntantang GE, et al. Status of care for end stage kidney disease in countries and regions worldwide: international cross sectional survey. BMJ. 2019;367:l5873.PubMedCrossRef Bello AK, Levin A, Lunney M, Osman MA, Ye F, Ashuntantang GE, et al. Status of care for end stage kidney disease in countries and regions worldwide: international cross sectional survey. BMJ. 2019;367:l5873.PubMedCrossRef
4.
go back to reference Ok E, Asci G, Chazot C, Ozkahya M, Mees EJ. Controversies and problems of volume control and hypertension in haemodialysis. Lancet. 2016;388(10041):285–93.PubMedCrossRef Ok E, Asci G, Chazot C, Ozkahya M, Mees EJ. Controversies and problems of volume control and hypertension in haemodialysis. Lancet. 2016;388(10041):285–93.PubMedCrossRef
5.
go back to reference Trinh-Trang-Tan MM, Cartron JP, Bankir L. Molecular basis for the dialysis disequilibrium syndrome: altered aquaporin and urea transporter expression in the brain. Nephrol Dial Transplant. 2005;20(9):1984–8.PubMedCrossRef Trinh-Trang-Tan MM, Cartron JP, Bankir L. Molecular basis for the dialysis disequilibrium syndrome: altered aquaporin and urea transporter expression in the brain. Nephrol Dial Transplant. 2005;20(9):1984–8.PubMedCrossRef
6.
go back to reference Matsuzaki T, Suzuki T, Takata K. Hypertonicity-induced expression of aquaporin 3 in MDCK cells. Am J Physiol Cell Physiol. 2001;281(1):C55–63.PubMedCrossRef Matsuzaki T, Suzuki T, Takata K. Hypertonicity-induced expression of aquaporin 3 in MDCK cells. Am J Physiol Cell Physiol. 2001;281(1):C55–63.PubMedCrossRef
7.
go back to reference Campos E, Moura TF, Oliva A, Leandro P, Soveral G. Lack of Aquaporin 3 in bovine erythrocyte membranes correlates with low glycerol permeation. Biochem Biophys Res Commun. 2011;408(3):477–81.PubMedCrossRef Campos E, Moura TF, Oliva A, Leandro P, Soveral G. Lack of Aquaporin 3 in bovine erythrocyte membranes correlates with low glycerol permeation. Biochem Biophys Res Commun. 2011;408(3):477–81.PubMedCrossRef
8.
go back to reference Buemi M, Floccari F, Di Pasquale G, Cutroneo G, Sturiale A, Aloisi C, et al. AQP1 in red blood cells of uremic patients during hemodialytic treatment. Nephron. 2002;92(4):846–52.PubMedCrossRef Buemi M, Floccari F, Di Pasquale G, Cutroneo G, Sturiale A, Aloisi C, et al. AQP1 in red blood cells of uremic patients during hemodialytic treatment. Nephron. 2002;92(4):846–52.PubMedCrossRef
9.
go back to reference Ishibashi K, Sasaki S, Fushimi K, Yamamoto T, Kuwahara M, Marumo F. Immunolocalization and effect of dehydration on AQP3, a basolateral water channel of kidney collecting ducts. Am J Physiol. 1997;272(2 Pt 2):F235–41.PubMed Ishibashi K, Sasaki S, Fushimi K, Yamamoto T, Kuwahara M, Marumo F. Immunolocalization and effect of dehydration on AQP3, a basolateral water channel of kidney collecting ducts. Am J Physiol. 1997;272(2 Pt 2):F235–41.PubMed
10.
go back to reference Manso M, Drake MJ, Fry CH, Conway M, Hancock JT, Vahabi B. Expression and localization of aquaporin water channels in adult pig urinary bladder. J Cell Mol Med. 2019;23(5):3772–5.PubMedPubMedCentralCrossRef Manso M, Drake MJ, Fry CH, Conway M, Hancock JT, Vahabi B. Expression and localization of aquaporin water channels in adult pig urinary bladder. J Cell Mol Med. 2019;23(5):3772–5.PubMedPubMedCentralCrossRef
11.
go back to reference Rodriguez RA, Liang H, Chen LY, Plascencia-Villa G, Perry G. Single-channel permeability and glycerol affinity of human aquaglyceroporin AQP3. Biochim Biophys Acta Biomembr. 2019;1861(4):768–75.PubMedPubMedCentralCrossRef Rodriguez RA, Liang H, Chen LY, Plascencia-Villa G, Perry G. Single-channel permeability and glycerol affinity of human aquaglyceroporin AQP3. Biochim Biophys Acta Biomembr. 2019;1861(4):768–75.PubMedPubMedCentralCrossRef
12.
go back to reference Roudier N, Verbavatz JM, Maurel C, Ripoche P, Tacnet F. Evidence for the presence of aquaporin-3 in human red blood cells. J Biol Chem. 1998;273(14):8407–12.PubMedCrossRef Roudier N, Verbavatz JM, Maurel C, Ripoche P, Tacnet F. Evidence for the presence of aquaporin-3 in human red blood cells. J Biol Chem. 1998;273(14):8407–12.PubMedCrossRef
13.
go back to reference Macey RI, Yousef LW. Osmotic stability of red cells in renal circulation requires rapid urea transport. Am J Physiol. 1988;254(5 Pt 1):C669–74.PubMedCrossRef Macey RI, Yousef LW. Osmotic stability of red cells in renal circulation requires rapid urea transport. Am J Physiol. 1988;254(5 Pt 1):C669–74.PubMedCrossRef
14.
go back to reference Yang B, Verkman AS. Analysis of double knockout mice lacking aquaporin-1 and urea transporter UT-B. evidence for UT-B-facilitated water transport in erythrocytes. J Biol Chem. 2002;277(39):36782–6.PubMedCrossRef Yang B, Verkman AS. Analysis of double knockout mice lacking aquaporin-1 and urea transporter UT-B. evidence for UT-B-facilitated water transport in erythrocytes. J Biol Chem. 2002;277(39):36782–6.PubMedCrossRef
15.
go back to reference Huang B, Wang H, Yang B. Water transport mediated by other membrane proteins. Adv Exp Med Biol. 2017;969:251–61.PubMedCrossRef Huang B, Wang H, Yang B. Water transport mediated by other membrane proteins. Adv Exp Med Biol. 2017;969:251–61.PubMedCrossRef
17.
go back to reference Brahm J. The permeability of red blood cells to chloride, urea and water. J Exp Biol. 2013;216(Pt 12):2238–46.PubMed Brahm J. The permeability of red blood cells to chloride, urea and water. J Exp Biol. 2013;216(Pt 12):2238–46.PubMed
18.
go back to reference Raimann J, Liu L, Tyagi S, Levin NW, Kotanko P. A fresh look at dry weight. Hemodial Int. 2008;12(4):395–405.PubMedCrossRef Raimann J, Liu L, Tyagi S, Levin NW, Kotanko P. A fresh look at dry weight. Hemodial Int. 2008;12(4):395–405.PubMedCrossRef
19.
go back to reference Kidney Disease: Improving Global Outcomes (KDIGO) Anemia Work Group. KDIGO Clinical Practice Guideline for Anemia in Chronic Kidney Disease. Kidney Int Suppl. 2012;2:279–335 Kidney Disease: Improving Global Outcomes (KDIGO) Anemia Work Group. KDIGO Clinical Practice Guideline for Anemia in Chronic Kidney Disease. Kidney Int Suppl. 2012;2:279–335
20.
go back to reference KDIGO Clinical Practice Guideline for the Diagnosis. Evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int. 2009;76:S1-130. KDIGO Clinical Practice Guideline for the Diagnosis. Evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int. 2009;76:S1-130.
21.
go back to reference Colagiuri S. Optimal management of type 2 diabetes: the evidence. Diabetes Obes Metab. 2012;14(Suppl 1):3–8.PubMedCrossRef Colagiuri S. Optimal management of type 2 diabetes: the evidence. Diabetes Obes Metab. 2012;14(Suppl 1):3–8.PubMedCrossRef
22.
go back to reference Hara-Chikuma M, Satooka H, Watanabe S, Honda T, Miyachi Y, Watanabe T, et al. Aquaporin-3-mediated hydrogen peroxide transport is required for NF-κB signalling in keratinocytes and development of psoriasis. Nat Commun. 2015;6:7454.PubMedCrossRef Hara-Chikuma M, Satooka H, Watanabe S, Honda T, Miyachi Y, Watanabe T, et al. Aquaporin-3-mediated hydrogen peroxide transport is required for NF-κB signalling in keratinocytes and development of psoriasis. Nat Commun. 2015;6:7454.PubMedCrossRef
23.
go back to reference Bedford JJ, Leader JP, Walker RJ. Aquaporin expression in normal human kidney and in renal disease. J Am Soc Nephrol. 2003;14(10):2581–7.PubMedCrossRef Bedford JJ, Leader JP, Walker RJ. Aquaporin expression in normal human kidney and in renal disease. J Am Soc Nephrol. 2003;14(10):2581–7.PubMedCrossRef
24.
go back to reference Apostol E, Ecelbarger CA, Terris J, Bradford AD, Andrews P, Knepper MA. Reduced renal medullary water channel expression in puromycin aminonucleoside–induced nephrotic syndrome. J Am Soc Nephrol. 1997;8(1):15–24.PubMedCrossRef Apostol E, Ecelbarger CA, Terris J, Bradford AD, Andrews P, Knepper MA. Reduced renal medullary water channel expression in puromycin aminonucleoside–induced nephrotic syndrome. J Am Soc Nephrol. 1997;8(1):15–24.PubMedCrossRef
26.
go back to reference Lei L, Wang W, Jia Y, Su L, Zhou H, Verkman AS, et al. Aquaporin-3 deletion in mice results in renal collecting duct abnormalities and worsens ischemia-reperfusion injury. Biochim Biophys Acta Mol Basis Dis. 2017;1863(6):1231–41.PubMedCrossRef Lei L, Wang W, Jia Y, Su L, Zhou H, Verkman AS, et al. Aquaporin-3 deletion in mice results in renal collecting duct abnormalities and worsens ischemia-reperfusion injury. Biochim Biophys Acta Mol Basis Dis. 2017;1863(6):1231–41.PubMedCrossRef
27.
go back to reference Momose A, Funyu T, Wada R, Shiraiwa Y. AQP-3 in the epidermis of haemodialysis patients with CKD-associated pruritus is overexpressed. J Clin Exp Nephrol. 2016;1:7.CrossRef Momose A, Funyu T, Wada R, Shiraiwa Y. AQP-3 in the epidermis of haemodialysis patients with CKD-associated pruritus is overexpressed. J Clin Exp Nephrol. 2016;1:7.CrossRef
28.
go back to reference Lai KN, Leung JC, Chan LY, Tang S, Li FK, Lui SL, et al. Expression of aquaporin-3 in human peritoneal mesothelial cells and its up-regulation by glucose in vitro. Kidney Int. 2002;62(4):1431–9.PubMedCrossRef Lai KN, Leung JC, Chan LY, Tang S, Li FK, Lui SL, et al. Expression of aquaporin-3 in human peritoneal mesothelial cells and its up-regulation by glucose in vitro. Kidney Int. 2002;62(4):1431–9.PubMedCrossRef
29.
go back to reference Asai M, Higuchi S, Kubota M, Iguchi K, Usui S, Hirano K. Regulators for blood glucose level affect gene expression of aquaporin 3. Biol Pharm Bull. 2006;29(5):991–6.PubMedCrossRef Asai M, Higuchi S, Kubota M, Iguchi K, Usui S, Hirano K. Regulators for blood glucose level affect gene expression of aquaporin 3. Biol Pharm Bull. 2006;29(5):991–6.PubMedCrossRef
31.
32.
go back to reference Yang B, Bankir L, Gillespie A, Epstein CJ, Verkman AS. Urea-selective concentrating defect in transgenic mice lacking urea transporter UT-B. J Biol Chem. 2002;277(12):10633–7.PubMedCrossRef Yang B, Bankir L, Gillespie A, Epstein CJ, Verkman AS. Urea-selective concentrating defect in transgenic mice lacking urea transporter UT-B. J Biol Chem. 2002;277(12):10633–7.PubMedCrossRef
33.
go back to reference Sugiyama Y, Ota Y, Hara M, Inoue S. Osmotic stress up-regulates aquaporin-3 gene expression in cultured human keratinocytes. Biochim Biophys Acta. 2001;1522(2):82–8.PubMedCrossRef Sugiyama Y, Ota Y, Hara M, Inoue S. Osmotic stress up-regulates aquaporin-3 gene expression in cultured human keratinocytes. Biochim Biophys Acta. 2001;1522(2):82–8.PubMedCrossRef
34.
go back to reference Rubenwolf PC, Georgopoulos NT, Kirkwood LA, Baker SC, Southgate J. Aquaporin expression contributes to human transurothelial permeability in vitro and is modulated by NaCl. PLoS ONE. 2012;7(9):e45339.PubMedPubMedCentralCrossRef Rubenwolf PC, Georgopoulos NT, Kirkwood LA, Baker SC, Southgate J. Aquaporin expression contributes to human transurothelial permeability in vitro and is modulated by NaCl. PLoS ONE. 2012;7(9):e45339.PubMedPubMedCentralCrossRef
35.
go back to reference Locatelli F, Pozzoni P, Del Vecchio L. Renal replacement therapy in patients with diabetes and end-stage renal disease. J Am Soc Nephrol. 2004;15(Suppl 1):S25–9.PubMedCrossRef Locatelli F, Pozzoni P, Del Vecchio L. Renal replacement therapy in patients with diabetes and end-stage renal disease. J Am Soc Nephrol. 2004;15(Suppl 1):S25–9.PubMedCrossRef
36.
go back to reference Oster JR, Singer I. Hyponatremia, hyposmolality, and hypotonicity: tables and fables. Arch Intern Med. 1999;159(4):333–6.PubMedCrossRef Oster JR, Singer I. Hyponatremia, hyposmolality, and hypotonicity: tables and fables. Arch Intern Med. 1999;159(4):333–6.PubMedCrossRef
37.
go back to reference Bruzda-Zwiech A, Szczepańska J, Zwiech R. Sodium gradient, xerostomia, thirst and inter-dialytic excessive weight gain: a possible relationship with hyposalivation in patients on maintenance hemodialysis. Int Urol Nephrol. 2014;46(7):1411–7.PubMedCrossRef Bruzda-Zwiech A, Szczepańska J, Zwiech R. Sodium gradient, xerostomia, thirst and inter-dialytic excessive weight gain: a possible relationship with hyposalivation in patients on maintenance hemodialysis. Int Urol Nephrol. 2014;46(7):1411–7.PubMedCrossRef
38.
go back to reference Zwiech R, Bruzda-Zwiech A. The dual blockade of the renin-angiotensin system in hemodialysis patients requires decreased dialysate sodium concentration. Int Urol Nephrol. 2013;45(5):1365–72.PubMedCrossRef Zwiech R, Bruzda-Zwiech A. The dual blockade of the renin-angiotensin system in hemodialysis patients requires decreased dialysate sodium concentration. Int Urol Nephrol. 2013;45(5):1365–72.PubMedCrossRef
39.
go back to reference Eftimovska-Otovic N, Stojceva-Taneva O, Grozdanovski R, Stojcev S. Clinical effects of standard and individualized dialysate sodium in patients on maintenance hemodialysis. Open Access Maced J Med Sci. 2016;4(2):248–52.PubMedPubMedCentralCrossRef Eftimovska-Otovic N, Stojceva-Taneva O, Grozdanovski R, Stojcev S. Clinical effects of standard and individualized dialysate sodium in patients on maintenance hemodialysis. Open Access Maced J Med Sci. 2016;4(2):248–52.PubMedPubMedCentralCrossRef
40.
go back to reference Akdag S, Akyol A, Cakmak HA, Tosu AR, Asker M, Yaman M, et al. The effect of low-sodium dialysate on ambulatory blood pressure measurement parameters in patients undergoing hemodialysis. Ther Clin Risk Manag. 2015;11:1829–35.PubMedPubMedCentralCrossRef Akdag S, Akyol A, Cakmak HA, Tosu AR, Asker M, Yaman M, et al. The effect of low-sodium dialysate on ambulatory blood pressure measurement parameters in patients undergoing hemodialysis. Ther Clin Risk Manag. 2015;11:1829–35.PubMedPubMedCentralCrossRef
41.
go back to reference Santos EJF, Hortegal EV, Serra HO, Lages JS, Salgado-Filho N, Dos Santos AM. Epoetin alfa resistance in hemodialysis patients with chronic kidney disease: a longitudinal study. Braz J Med Biol Res. 2018;51(7): e7288.PubMedPubMedCentralCrossRef Santos EJF, Hortegal EV, Serra HO, Lages JS, Salgado-Filho N, Dos Santos AM. Epoetin alfa resistance in hemodialysis patients with chronic kidney disease: a longitudinal study. Braz J Med Biol Res. 2018;51(7): e7288.PubMedPubMedCentralCrossRef
42.
go back to reference Stuard S, Arkossy O, Moissl U, Wabel P, Canaud B, Ponce P. Fluid overload is associated with erythropoietin hyporesponsiveness in chronic haemodialysis patients: results from a large cross-sectional database study. Nephrol Dial Transplant. 2018;33:i459–60.CrossRef Stuard S, Arkossy O, Moissl U, Wabel P, Canaud B, Ponce P. Fluid overload is associated with erythropoietin hyporesponsiveness in chronic haemodialysis patients: results from a large cross-sectional database study. Nephrol Dial Transplant. 2018;33:i459–60.CrossRef
43.
go back to reference Bruzda-Zwiech A, Szczepańska J, Zwiech R. Xerostomia, thirst, sodium gradient and inter-dialytic weight gain in hemodialysis diabetic vs. non-diabetic patients. Med Oral Patol Oral Cir Bucal. 2018;23(4):e406–12.PubMedPubMedCentral Bruzda-Zwiech A, Szczepańska J, Zwiech R. Xerostomia, thirst, sodium gradient and inter-dialytic weight gain in hemodialysis diabetic vs. non-diabetic patients. Med Oral Patol Oral Cir Bucal. 2018;23(4):e406–12.PubMedPubMedCentral
Metadata
Title
A potential link between AQP3 and SLC14A1 gene expression level and clinical parameters of maintenance hemodialysis patients
Authors
Rafał Zwiech
Agnieszka Bruzda-Zwiech
Ewa Balcerczak
Joanna Szczepańska
Adrian Krygier
Beata Małachowska
Dominika Michałek
Dagmara Szmajda-Krygier
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Nephrology / Issue 1/2022
Electronic ISSN: 1471-2369
DOI
https://doi.org/10.1186/s12882-022-02922-4

Other articles of this Issue 1/2022

BMC Nephrology 1/2022 Go to the issue