Skip to main content
Top
Published in: BMC Nephrology 1/2022

Open Access 01-12-2022 | Research

Stimulated phosphorylation of ERK in mouse kidney mesangial cells is dependent upon expression of Cav3.1

Authors: Sudha Priya Soundara Pandi, Michael J. Shattock, Bruce M. Hendry, Claire C. Sharpe

Published in: BMC Nephrology | Issue 1/2022

Login to get access

Abstract

Background

T-type calcium channels (TTCC) are low voltage activated channels that are widely expressed in the heart, smooth muscle and neurons. They are known to impact on cell cycle progression in cancer and smooth muscle cells and more recently, have been implicated in rat and human mesangial cell proliferation. The aim of this study was to investigate the roles of the different isoforms of TTCC in mouse mesangial cells to establish which may be the best therapeutic target for treating mesangioproliferative kidney diseases. 

Methods

In this study, we generated single and double knockout (SKO and DKO) clones of the TTCC isoforms CaV3.1 and CaV3.2 in mouse mesangial cells using CRISPR-cas9 gene editing. The downstream signals linked to this channel activity were studied by ERK1/2 phosphorylation assays in serum, PDGF and TGF-β1 stimulated cells. We also examined their proliferative responses in the presence of the TTCC inhibitors mibefradil and TH1177.

Results

We demonstrate a complete loss of ERK1/2 phosphorylation in response to multiple stimuli (serum, PDGF, TGF-β1) in CaV3.1 SKO clone, whereas the CaV3.2 SKO clone retained these phospho-ERK1/2 responses. Stimulated cell proliferation was not profoundly impacted in either SKO clone and both clones remained sensitive to non-selective TTCC blockers, suggesting a role for more than one TTCC isoform in cell cycle progression. Deletion of both the isoforms resulted in cell death.

Conclusion

This study confirms that TTCC are expressed in mouse mesangial cells and that they play a role in cell proliferation. Whereas the CaV3.1 isoform is required for stimulated phosphorylation of ERK1/2, the Ca V3.2 isoform is not. Our data also suggest that neither isoform is necessary for cell proliferation and that the anti-proliferative effects of mibefradil and TH1177 are not isoform-specific. These findings are consistent with data from in vivo rat mesangial proliferation Thy1 models and support the future use of genetic mouse models to test the therapeutic actions of TTCC inhibitors.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kurihara H, Sakai T. Cell biology of mesangial cells: the third cell that maintains the glomerular capillary. Anat Sci Int. 2017;92(2):173–86.CrossRef Kurihara H, Sakai T. Cell biology of mesangial cells: the third cell that maintains the glomerular capillary. Anat Sci Int. 2017;92(2):173–86.CrossRef
2.
go back to reference Pabst R, Sterzel RB. Cell renewal of glomerular cell types in normal rats. An autoradiographic analysis. Kidney Int. 1983;24(5):626–31.CrossRef Pabst R, Sterzel RB. Cell renewal of glomerular cell types in normal rats. An autoradiographic analysis. Kidney Int. 1983;24(5):626–31.CrossRef
3.
go back to reference Pesce CM, Striker LJ, Peten E, Elliot SJ, Striker GE. Glomerulosclerosis at both early and late stages is associated with increased cell turnover in mice transgenic for growth hormone. Lab Invest. 1991;65(5):601–5.PubMed Pesce CM, Striker LJ, Peten E, Elliot SJ, Striker GE. Glomerulosclerosis at both early and late stages is associated with increased cell turnover in mice transgenic for growth hormone. Lab Invest. 1991;65(5):601–5.PubMed
4.
go back to reference Floege J, Burns MW, Alpers CE, Yoshimura A, Pritzl P, Gordon K, Seifert RA, Bowen-Pope DF, Couser WG, Johnson RJ. Glomerular cell proliferation and PDGF expression precede glomerulosclerosis in the remnant kidney model. Kidney Int. 1992;41(2):297–309.CrossRef Floege J, Burns MW, Alpers CE, Yoshimura A, Pritzl P, Gordon K, Seifert RA, Bowen-Pope DF, Couser WG, Johnson RJ. Glomerular cell proliferation and PDGF expression precede glomerulosclerosis in the remnant kidney model. Kidney Int. 1992;41(2):297–309.CrossRef
5.
go back to reference Floege J, Johnson RJ, Gordon K, Iida H, Pritzl P, Yoshimura A, Campbell C, Alpers CE, Couser WG. Increased synthesis of extracellular matrix in mesangial proliferative nephritis. Kidney Int. 1991;40(3):477–88.CrossRef Floege J, Johnson RJ, Gordon K, Iida H, Pritzl P, Yoshimura A, Campbell C, Alpers CE, Couser WG. Increased synthesis of extracellular matrix in mesangial proliferative nephritis. Kidney Int. 1991;40(3):477–88.CrossRef
6.
go back to reference Feng X, Wu C, Yang M, Liu Q, Li H, Liu J, Zhang Y, Hao Y, Kang L, Zhang Y, et al. Role of PI3K/Akt signal pathway on proliferation of mesangial cell induced by HMGB1. Tissue Cell. 2016;48(2):121–5.CrossRef Feng X, Wu C, Yang M, Liu Q, Li H, Liu J, Zhang Y, Hao Y, Kang L, Zhang Y, et al. Role of PI3K/Akt signal pathway on proliferation of mesangial cell induced by HMGB1. Tissue Cell. 2016;48(2):121–5.CrossRef
7.
go back to reference Gilbert RE, Kelly DJ, McKay T, Chadban S, Hill PA, Cooper ME, Atkins RC, Nikolic-Paterson DJ. PDGF signal transduction inhibition ameliorates experimental mesangial proliferative glomerulonephritis. Kidney Int. 2001;59(4):1324–32.CrossRef Gilbert RE, Kelly DJ, McKay T, Chadban S, Hill PA, Cooper ME, Atkins RC, Nikolic-Paterson DJ. PDGF signal transduction inhibition ameliorates experimental mesangial proliferative glomerulonephritis. Kidney Int. 2001;59(4):1324–32.CrossRef
8.
go back to reference Cove-Smith A, Hendry BM. The regulation of mesangial cell proliferation. NephronExperimental nephrology. 2008;108(4):e74-79. Cove-Smith A, Hendry BM. The regulation of mesangial cell proliferation. NephronExperimental nephrology. 2008;108(4):e74-79.
9.
go back to reference Schocklmann HO, Lang S, Sterzel RB. Regulation of mesangial cell proliferation. Kidney Int. 1999;56(4):1199–207.CrossRef Schocklmann HO, Lang S, Sterzel RB. Regulation of mesangial cell proliferation. Kidney Int. 1999;56(4):1199–207.CrossRef
10.
go back to reference McCleskey EW, Fox AP, Feldman D, Tsien RW. Different types of calcium channels. J Exp Biol. 1986;124:177–90.CrossRef McCleskey EW, Fox AP, Feldman D, Tsien RW. Different types of calcium channels. J Exp Biol. 1986;124:177–90.CrossRef
11.
go back to reference Orth SR, Nobiling R, Bonisch S, Ritz E. Inhibitory effect of calcium channel blockers on human mesangial cell growth: evidence for actions independent of L-type Ca2+ channels. Kidney Int. 1996;49(3):868–79.CrossRef Orth SR, Nobiling R, Bonisch S, Ritz E. Inhibitory effect of calcium channel blockers on human mesangial cell growth: evidence for actions independent of L-type Ca2+ channels. Kidney Int. 1996;49(3):868–79.CrossRef
12.
go back to reference Cove-Smith A, Mulgrew CJ, Rudyk O, Dutt N, McLatchie LM, Shattock MJ, Hendry BM. Anti-proliferative actions of T-type calcium channel inhibition in Thy1 nephritis. Am J Pathol. 2013;183(2):391–401.CrossRef Cove-Smith A, Mulgrew CJ, Rudyk O, Dutt N, McLatchie LM, Shattock MJ, Hendry BM. Anti-proliferative actions of T-type calcium channel inhibition in Thy1 nephritis. Am J Pathol. 2013;183(2):391–401.CrossRef
13.
go back to reference Cove-Smith A, Sharpe CC, Shattock MJ, Hendry BM. Ion-Channel modulator TH1177 reduces glomerular injury and serum creatinine in chronic mesangial proliferative disease in rats. BMC Nephrol. 2020;21(1):187.CrossRef Cove-Smith A, Sharpe CC, Shattock MJ, Hendry BM. Ion-Channel modulator TH1177 reduces glomerular injury and serum creatinine in chronic mesangial proliferative disease in rats. BMC Nephrol. 2020;21(1):187.CrossRef
14.
go back to reference Mulgrew CJ, Cove-Smith A, McLatchie LM, Brooks G, Shattock MJ, Hendry BM. Inhibition of human mesangial cell proliferation by targeting T-type calcium channels. Nephron Exp Nephrol. 2009;113(2):e77-88.CrossRef Mulgrew CJ, Cove-Smith A, McLatchie LM, Brooks G, Shattock MJ, Hendry BM. Inhibition of human mesangial cell proliferation by targeting T-type calcium channels. Nephron Exp Nephrol. 2009;113(2):e77-88.CrossRef
15.
go back to reference Pluteanu F, Cribbs LL. Regulation and function of Cav3.1 T-type calcium channels in IGF-I-stimulated pulmonary artery smooth muscle cells. Am J Physiol Cell Physiol. 2011;300(3):C517-525.CrossRef Pluteanu F, Cribbs LL. Regulation and function of Cav3.1 T-type calcium channels in IGF-I-stimulated pulmonary artery smooth muscle cells. Am J Physiol Cell Physiol. 2011;300(3):C517-525.CrossRef
16.
go back to reference Thuesen AD, Andersen K, Lyngso KS, Burton M, Brasch-Andersen C, Vanhoutte PM, Hansen PBL. Deletion of T-type calcium channels Cav3.1 or Cav3.2 attenuates endothelial dysfunction in aging mice. Pflugers Arch. 2018;470(2):355–65.CrossRef Thuesen AD, Andersen K, Lyngso KS, Burton M, Brasch-Andersen C, Vanhoutte PM, Hansen PBL. Deletion of T-type calcium channels Cav3.1 or Cav3.2 attenuates endothelial dysfunction in aging mice. Pflugers Arch. 2018;470(2):355–65.CrossRef
17.
go back to reference Lu F, Chen H, Zhou C, Liu S, Guo M, Chen P, Zhuang H, Xie D, Wu S. T-type Ca2+ channel expression in human esophageal carcinomas: a functional role in proliferation. Cell Calcium. 2008;43(1):49–58.CrossRef Lu F, Chen H, Zhou C, Liu S, Guo M, Chen P, Zhuang H, Xie D, Wu S. T-type Ca2+ channel expression in human esophageal carcinomas: a functional role in proliferation. Cell Calcium. 2008;43(1):49–58.CrossRef
18.
go back to reference Duronio RJ, Xiong Y. Signaling pathways that control cell proliferation. Cold Spring Harb Perspect Biol. 2013;5(3):a008904.CrossRef Duronio RJ, Xiong Y. Signaling pathways that control cell proliferation. Cold Spring Harb Perspect Biol. 2013;5(3):a008904.CrossRef
19.
go back to reference Bokemeyer D, Panek D, Kramer HJ, Lindemann M, Kitahara M, Boor P, Kerjaschki D, Trzaskos JM, Floege J, Ostendorf T. In vivo identification of the mitogen-activated protein kinase cascade as a central pathogenic pathway in experimental mesangioproliferative glomerulonephritis. J Am Soc Nephrol. 2002;13(6):1473–80.CrossRef Bokemeyer D, Panek D, Kramer HJ, Lindemann M, Kitahara M, Boor P, Kerjaschki D, Trzaskos JM, Floege J, Ostendorf T. In vivo identification of the mitogen-activated protein kinase cascade as a central pathogenic pathway in experimental mesangioproliferative glomerulonephritis. J Am Soc Nephrol. 2002;13(6):1473–80.CrossRef
20.
go back to reference Clarke HC, Kocher HM, Khwaja A, Kloog Y, Cook HT, Hendry BM. Ras antagonist farnesylthiosalicylic acid (FTS) reduces glomerular cellular proliferation and macrophage number in rat thy-1 nephritis. J Am Soc Nephrol. 2003;14(4):848–54.CrossRef Clarke HC, Kocher HM, Khwaja A, Kloog Y, Cook HT, Hendry BM. Ras antagonist farnesylthiosalicylic acid (FTS) reduces glomerular cellular proliferation and macrophage number in rat thy-1 nephritis. J Am Soc Nephrol. 2003;14(4):848–54.CrossRef
21.
go back to reference Martin RL, Lee JH, Cribbs LL, Perez-Reyes E, Hanck DA. Mibefradil block of cloned T-type calcium channels. J Pharmacol Exp Ther. 2000;295(1):302–8.PubMed Martin RL, Lee JH, Cribbs LL, Perez-Reyes E, Hanck DA. Mibefradil block of cloned T-type calcium channels. J Pharmacol Exp Ther. 2000;295(1):302–8.PubMed
22.
go back to reference Griffin KA, Picken M, Bakris GL, Bidani AK. Comparative effects of selective T- and L-type calcium channel blockers in the remnant kidney model. Hypertension. 2001;37(5):1268–72.CrossRef Griffin KA, Picken M, Bakris GL, Bidani AK. Comparative effects of selective T- and L-type calcium channel blockers in the remnant kidney model. Hypertension. 2001;37(5):1268–72.CrossRef
23.
go back to reference Haverstick DM, Heady TN, Macdonald TL, Gray LS. Inhibition of human prostate cancer proliferation in vitro and in a mouse model by a compound synthesized to block Ca2+ entry. Cancer Res. 2000;60(4):1002–8.PubMed Haverstick DM, Heady TN, Macdonald TL, Gray LS. Inhibition of human prostate cancer proliferation in vitro and in a mouse model by a compound synthesized to block Ca2+ entry. Cancer Res. 2000;60(4):1002–8.PubMed
24.
go back to reference Landowski CP, Bolanz KA, Suzuki Y, Hediger MA. Chemical inhibitors of the calcium entry channel TRPV6. Pharm Res. 2011;28(2):322–30.CrossRef Landowski CP, Bolanz KA, Suzuki Y, Hediger MA. Chemical inhibitors of the calcium entry channel TRPV6. Pharm Res. 2011;28(2):322–30.CrossRef
25.
go back to reference Rodman DM, Harral J, Wu S, West J, Hoedt-Miller M, Reese KA, Fagan K. The low-voltage-activated calcium channel CAV3.1 controls proliferation of human pulmonary artery myocytes. Chest. 2005;128(6 Suppl):581s–2s.CrossRef Rodman DM, Harral J, Wu S, West J, Hoedt-Miller M, Reese KA, Fagan K. The low-voltage-activated calcium channel CAV3.1 controls proliferation of human pulmonary artery myocytes. Chest. 2005;128(6 Suppl):581s–2s.CrossRef
26.
go back to reference Sankhe S, Manousakidi S, Antigny F, Arthur Ataam J, Bentebbal S, Ruchon Y, Lecerf F, Sabourin J, Price L, Fadel E, et al. T-type Ca(2+) channels elicit pro-proliferative and anti-apoptotic responses through impaired PP2A/Akt1 signaling in PASMCs from patients with pulmonary arterial hypertension. Biochim Biophys Acta Mol Cell Res. 2017;1864(10):1631–41.CrossRef Sankhe S, Manousakidi S, Antigny F, Arthur Ataam J, Bentebbal S, Ruchon Y, Lecerf F, Sabourin J, Price L, Fadel E, et al. T-type Ca(2+) channels elicit pro-proliferative and anti-apoptotic responses through impaired PP2A/Akt1 signaling in PASMCs from patients with pulmonary arterial hypertension. Biochim Biophys Acta Mol Cell Res. 2017;1864(10):1631–41.CrossRef
27.
go back to reference Hu S, Li L, Huang W, Liu J, Lan G, Yu S, Peng L, Xie X, Yang L, Nian Y, et al. CAV3.1 knockdown suppresses cell proliferation, migration and invasion of prostate cancer cells by inhibiting AKT. Cancer Manag Res. 2018;10:4603–14.CrossRef Hu S, Li L, Huang W, Liu J, Lan G, Yu S, Peng L, Xie X, Yang L, Nian Y, et al. CAV3.1 knockdown suppresses cell proliferation, migration and invasion of prostate cancer cells by inhibiting AKT. Cancer Manag Res. 2018;10:4603–14.CrossRef
28.
go back to reference Ohkubo T, Yamazaki J. T-type voltage-activated calcium channel Cav3.1, but not Cav3.2, is involved in the inhibition of proliferation and apoptosis in MCF-7 human breast cancer cells. Int J Oncol. 2012;41(1):267–75.PubMed Ohkubo T, Yamazaki J. T-type voltage-activated calcium channel Cav3.1, but not Cav3.2, is involved in the inhibition of proliferation and apoptosis in MCF-7 human breast cancer cells. Int J Oncol. 2012;41(1):267–75.PubMed
29.
go back to reference Oguri A, Tanaka T, Iida H, Meguro K, Takano H, Oonuma H, Nishimura S, Morita T, Yamasoba T, Nagai R, et al. Involvement of CaV3.1 T-type calcium channels in cell proliferation in mouse preadipocytes. Am J Physiol Cell Physiol. 2010;298(6):C1414-1423.CrossRef Oguri A, Tanaka T, Iida H, Meguro K, Takano H, Oonuma H, Nishimura S, Morita T, Yamasoba T, Nagai R, et al. Involvement of CaV3.1 T-type calcium channels in cell proliferation in mouse preadipocytes. Am J Physiol Cell Physiol. 2010;298(6):C1414-1423.CrossRef
30.
go back to reference Gray LS, Perez-Reyes E, Gomora JC, Haverstick DM, Shattock M, McLatchie L, Harper J, Brooks G, Heady T, Macdonald TL. The role of voltage gated T-type Ca2+ channel isoforms in mediating “capacitative” Ca2+ entry in cancer cells. Cell Calcium. 2004;36(6):489–97.CrossRef Gray LS, Perez-Reyes E, Gomora JC, Haverstick DM, Shattock M, McLatchie L, Harper J, Brooks G, Heady T, Macdonald TL. The role of voltage gated T-type Ca2+ channel isoforms in mediating “capacitative” Ca2+ entry in cancer cells. Cell Calcium. 2004;36(6):489–97.CrossRef
Metadata
Title
Stimulated phosphorylation of ERK in mouse kidney mesangial cells is dependent upon expression of Cav3.1
Authors
Sudha Priya Soundara Pandi
Michael J. Shattock
Bruce M. Hendry
Claire C. Sharpe
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Nephrology / Issue 1/2022
Electronic ISSN: 1471-2369
DOI
https://doi.org/10.1186/s12882-022-02844-1

Other articles of this Issue 1/2022

BMC Nephrology 1/2022 Go to the issue