Skip to main content
Top
Published in: BMC Nephrology 1/2022

Open Access 01-12-2022 | Kidney Transplantation | Software

Predicting the survival of kidney transplantation: design and evaluation of a smartphone-based application

Authors: Leila Shahmoradi, Alireza Borhani, Mostafa Langarizadeh, Gholamreza Pourmand, Ziba Aghsaei fard, Sorayya Rezayi

Published in: BMC Nephrology | Issue 1/2022

Login to get access

Abstract

Background

Prediction of graft survival for Kidney Transplantation (KT) is considered a risky task due to the scarcity of donating organs and the use of health care resources. The present study aimed to design and evaluate a smartphone-based application to predict the survival of KT in patients with End-Stage Renal Disease (ESRD).

Method

Based on the initial review, a researcher-made questionnaire was developed to assess the information needs of the application through urologists and nephrologists. By using information obtained from the questionnaire, a checklist was prepared, and the information of 513 patients with kidney failure was collected from their records at Sina Urological Research Center. Then, three data mining algorithms were applied to them. The smartphone-based application for the prediction of kidney transplant survival was designed, and a standard usability assessment questionnaire was used to evaluate the designed application.

Results

Three information elements related to the required data in different sections of demographic information, sixteen information elements related to patient clinical information, and four critical capabilities were determined for the design of the smartphone-based application. C5.0 algorithm with the highest accuracy (87.21%) was modeled as the application inference engine. The application was developed based on the PhoneGap framework. According to the participants’ scores (urologists and nephrologists) regarding the usability evaluation of the application, it can be concluded that both groups participating in the study could use the program, and they rated the application at a "good" level.

Conclusion

Since the overall performance or usability of the smartphone-based app was evaluated at a reasonable level, it can be used with certainty to predict kidney transplant survival.
Appendix
Available only for authorised users
Literature
1.
go back to reference El Nahas AM, Bello AK. Chronic kidney disease: the global challenge. The lancet. 2005;365(9456):331–40.CrossRef El Nahas AM, Bello AK. Chronic kidney disease: the global challenge. The lancet. 2005;365(9456):331–40.CrossRef
2.
go back to reference Lucas GM, Lau B, Atta MG, Fine DM, Keruly J, Moore RD. Chronic kidney disease incidence, and progression to end-stage renal disease, in HIV-infected individuals: a tale of two races. J Infect Dis. 2008;197(11):1548–57.CrossRef Lucas GM, Lau B, Atta MG, Fine DM, Keruly J, Moore RD. Chronic kidney disease incidence, and progression to end-stage renal disease, in HIV-infected individuals: a tale of two races. J Infect Dis. 2008;197(11):1548–57.CrossRef
3.
go back to reference Cheng H-T, Xu X, Lim PS, Hung K-Y. Worldwide epidemiology of diabetes-related end-stage renal disease, 2000–2015. Diabetes Care. 2021;44(1):89–97.CrossRef Cheng H-T, Xu X, Lim PS, Hung K-Y. Worldwide epidemiology of diabetes-related end-stage renal disease, 2000–2015. Diabetes Care. 2021;44(1):89–97.CrossRef
4.
go back to reference Parikh NI, Hwang S-J, Larson MG, Levy D, Fox CS. Chronic kidney disease as a predictor of cardiovascular disease (from the Framingham Heart Study). Am J Cardiol. 2008;102(1):47–53.CrossRef Parikh NI, Hwang S-J, Larson MG, Levy D, Fox CS. Chronic kidney disease as a predictor of cardiovascular disease (from the Framingham Heart Study). Am J Cardiol. 2008;102(1):47–53.CrossRef
5.
go back to reference Danovitch GM, editor. Handbook of kidney transplantation. Lippincott Williams & Wilkins; 2009. Danovitch GM, editor. Handbook of kidney transplantation. Lippincott Williams & Wilkins; 2009.
6.
go back to reference Chan CT, Blankestijn PJ, Dember LM, Gallieni M, Harris DC, Lok CE, et al. Dialysis initiation, modality choice, access, and prescription: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 2019;96(1):37–47.CrossRef Chan CT, Blankestijn PJ, Dember LM, Gallieni M, Harris DC, Lok CE, et al. Dialysis initiation, modality choice, access, and prescription: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 2019;96(1):37–47.CrossRef
7.
go back to reference Montgomery JR, Berger JC, Warren DS, James N, Montgomery RA, Segev DL. Outcomes of ABO-incompatible kidney transplantation in the United States. Transplantation. 2012;93(6):603.CrossRef Montgomery JR, Berger JC, Warren DS, James N, Montgomery RA, Segev DL. Outcomes of ABO-incompatible kidney transplantation in the United States. Transplantation. 2012;93(6):603.CrossRef
8.
go back to reference Gander JC, Zhang X, Ross K, Wilk AS, McPherson L, Browne T, et al. Association between dialysis facility ownership and access to kidney transplantation. JAMA. 2019;322(10):957–73.CrossRef Gander JC, Zhang X, Ross K, Wilk AS, McPherson L, Browne T, et al. Association between dialysis facility ownership and access to kidney transplantation. JAMA. 2019;322(10):957–73.CrossRef
9.
go back to reference Topuz K, Zengul FD, Dag A, Almehmi A, Yildirim MB. Predicting graft survival among kidney transplant recipients: A Bayesian decision support model. Decis Support Syst. 2018;106:97–109.CrossRef Topuz K, Zengul FD, Dag A, Almehmi A, Yildirim MB. Predicting graft survival among kidney transplant recipients: A Bayesian decision support model. Decis Support Syst. 2018;106:97–109.CrossRef
10.
go back to reference Badrouchi S, Ahmed A, Bacha MM, Abderrahim E, Abdallah TB. A machine learning framework for predicting long-term graft survival after kidney transplantation. Expert Syst Appl. 2021;182: 115235.CrossRef Badrouchi S, Ahmed A, Bacha MM, Abderrahim E, Abdallah TB. A machine learning framework for predicting long-term graft survival after kidney transplantation. Expert Syst Appl. 2021;182: 115235.CrossRef
11.
go back to reference Greco R, Papalia T, Lofaro D, Maestripieri S, Mancuso D, Bonofiglio R, editors. Decisional trees in renal transplant follow-up. Transplantation proceedings; 2010: Elsevier. Greco R, Papalia T, Lofaro D, Maestripieri S, Mancuso D, Bonofiglio R, editors. Decisional trees in renal transplant follow-up. Transplantation proceedings; 2010: Elsevier.
12.
go back to reference Zhang J, Williams SO, Wang H. Intelligent computing system based on pattern recognition and data mining algorithms. Sustain Comput-Infor. 2018;20:192–202. Zhang J, Williams SO, Wang H. Intelligent computing system based on pattern recognition and data mining algorithms. Sustain Comput-Infor. 2018;20:192–202.
13.
go back to reference Shahmoradi L, Farzanehnejad AR. Guideline-based clinical decision support systems as an inseparable tool for better cancer care management. Iran J Public Health. 2016;45(7):962.PubMedPubMedCentral Shahmoradi L, Farzanehnejad AR. Guideline-based clinical decision support systems as an inseparable tool for better cancer care management. Iran J Public Health. 2016;45(7):962.PubMedPubMedCentral
14.
go back to reference Hosseini MM, Safdari R, Shahmoradi L, Javaherzadeh M. Better diagnosis of acute appendicitis by using artificial intelligence. ISMJ. 2017;20(4):339–48. Hosseini MM, Safdari R, Shahmoradi L, Javaherzadeh M. Better diagnosis of acute appendicitis by using artificial intelligence. ISMJ. 2017;20(4):339–48.
15.
go back to reference Martínez-Abad F, Gamazo A, Rodríguez-Conde MJ. Big data in education: detection of ICT factors associated with school effectiveness with data mining techniques. Proceedings of the sixth international conference on technological ecosystems for enhancing multiculturality. 2018.CrossRef Martínez-Abad F, Gamazo A, Rodríguez-Conde MJ. Big data in education: detection of ICT factors associated with school effectiveness with data mining techniques. Proceedings of the sixth international conference on technological ecosystems for enhancing multiculturality. 2018.CrossRef
16.
go back to reference Diamantidis CJ, Becker S. Health information technology (IT) to improve the care of patients with chronic kidney disease (CKD). BMC Nephrol. 2014;15(1):1–6.CrossRef Diamantidis CJ, Becker S. Health information technology (IT) to improve the care of patients with chronic kidney disease (CKD). BMC Nephrol. 2014;15(1):1–6.CrossRef
17.
go back to reference Solomon SR, Aubrey MT, Zhang X, Jackson KC, Morris LE, Holland HK, et al. Class II HLA mismatch improves outcomes following haploidentical transplantation with posttransplant cyclophosphamide. Blood Adv. 2020;4(20):5311–21.CrossRef Solomon SR, Aubrey MT, Zhang X, Jackson KC, Morris LE, Holland HK, et al. Class II HLA mismatch improves outcomes following haploidentical transplantation with posttransplant cyclophosphamide. Blood Adv. 2020;4(20):5311–21.CrossRef
18.
go back to reference Shahmoradi L, Langarizadeh M, Pourmand G. Comparing three data mining methods to predict kidney transplant survival. Acta Informatica Medica. 2016;24(5):322.CrossRef Shahmoradi L, Langarizadeh M, Pourmand G. Comparing three data mining methods to predict kidney transplant survival. Acta Informatica Medica. 2016;24(5):322.CrossRef
19.
go back to reference Shahmoradi L, Langarizadeh M, Pourmand G, Fard ZA, Borhani A. Comparing three data mining methods to predict kidney transplant survival. Acta Inform Med. 2016;24(5):322–7.CrossRef Shahmoradi L, Langarizadeh M, Pourmand G, Fard ZA, Borhani A. Comparing three data mining methods to predict kidney transplant survival. Acta Inform Med. 2016;24(5):322–7.CrossRef
20.
go back to reference Alexandru CA. Usability testing and improvement of telemedicine websites. Edinburgh: M Sc diss University of Edinburgh; 2010. Alexandru CA. Usability testing and improvement of telemedicine websites. Edinburgh: M Sc diss University of Edinburgh; 2010.
21.
go back to reference Papaioannou A, Karamanis G, Rigas I, Spanos T, Roupa Z. Determination and modelling of clinical laboratory data of healthy individuals and patients with end-stage renal failure. Cent Euro J Med. 2009;4(1):37. Papaioannou A, Karamanis G, Rigas I, Spanos T, Roupa Z. Determination and modelling of clinical laboratory data of healthy individuals and patients with end-stage renal failure. Cent Euro J Med. 2009;4(1):37.
22.
go back to reference Lofaro D, Maestripieri S, Greco R, Papalia T, Mancuso D, Conforti D, et al., editors. Prediction of chronic allograft nephropathy using classification trees. Transplantation proceedings; 2010: Elsevier Lofaro D, Maestripieri S, Greco R, Papalia T, Mancuso D, Conforti D, et al., editors. Prediction of chronic allograft nephropathy using classification trees. Transplantation proceedings; 2010: Elsevier
23.
go back to reference Chin WSY, Kurowski A, Gore R, Chen G, Punnett L. Use of a mobile app for the process evaluation of an intervention in health care: development and usability study. JMIR Form Res. 2021;5(10): e20739.CrossRef Chin WSY, Kurowski A, Gore R, Chen G, Punnett L. Use of a mobile app for the process evaluation of an intervention in health care: development and usability study. JMIR Form Res. 2021;5(10): e20739.CrossRef
24.
go back to reference Angel-Korman A, Stern L, Sarosiek S, Sloan JM, Doros G, Sanchorawala V, et al. Long-term outcome of kidney transplantation in AL amyloidosis. Kidney Int. 2019;95(2):405–11.CrossRef Angel-Korman A, Stern L, Sarosiek S, Sloan JM, Doros G, Sanchorawala V, et al. Long-term outcome of kidney transplantation in AL amyloidosis. Kidney Int. 2019;95(2):405–11.CrossRef
25.
go back to reference Bitkina OV, Kim HK, Park J. Usability and user experience of medical devices: An overview of the current state, analysis methodologies, and future challenges. Int J Ind Ergon. 2020;76: 102932.CrossRef Bitkina OV, Kim HK, Park J. Usability and user experience of medical devices: An overview of the current state, analysis methodologies, and future challenges. Int J Ind Ergon. 2020;76: 102932.CrossRef
26.
go back to reference Sobrinho A, da Silva LD, Perkusich A, Pinheiro ME, Cunha P. Design and evaluation of a mobile application to assist the self-monitoring of the chronic kidney disease in developing countries. BMC Med Inform Decis Mak. 2018;18(1):1–14.CrossRef Sobrinho A, da Silva LD, Perkusich A, Pinheiro ME, Cunha P. Design and evaluation of a mobile application to assist the self-monitoring of the chronic kidney disease in developing countries. BMC Med Inform Decis Mak. 2018;18(1):1–14.CrossRef
27.
go back to reference Hajavi A, Piri Z, Shahmoradi L, Asadi N, Kheradmandi S, Oveisi M, et al. A survey on completeness of inpatient informed consent forms in the three treatment-teaching centers in Iran University of Medical Sciences (IUMS). Journal of health administration. 2019;11(32):55–62. Hajavi A, Piri Z, Shahmoradi L, Asadi N, Kheradmandi S, Oveisi M, et al. A survey on completeness of inpatient informed consent forms in the three treatment-teaching centers in Iran University of Medical Sciences (IUMS). Journal of health administration. 2019;11(32):55–62.
Metadata
Title
Predicting the survival of kidney transplantation: design and evaluation of a smartphone-based application
Authors
Leila Shahmoradi
Alireza Borhani
Mostafa Langarizadeh
Gholamreza Pourmand
Ziba Aghsaei fard
Sorayya Rezayi
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Nephrology / Issue 1/2022
Electronic ISSN: 1471-2369
DOI
https://doi.org/10.1186/s12882-022-02841-4

Other articles of this Issue 1/2022

BMC Nephrology 1/2022 Go to the issue