Skip to main content
Top
Published in: BMC Nephrology 1/2021

Open Access 01-12-2021 | Acute Kidney Injury | Research article

Assessment of acute kidney injury risk using a machine-learning guided generalized structural equation model: a cohort study

Authors: Wen En Joseph Wong, Siew Pang Chan, Juin Keith Yong, Yen Yu Sherlyn Tham, Jie Rui Gerald Lim, Ming Ann Sim, Chai Rick Soh, Lian Kah Ti, Tsong Huey Sophia Chew

Published in: BMC Nephrology | Issue 1/2021

Login to get access

Abstract

Background

Acute kidney injury is common in the surgical intensive care unit (ICU). It is associated with poor patient outcomes and high healthcare resource usage. This study’s primary objective is to help identify which ICU patients are at high risk for acute kidney injury. Its secondary objective is to examine the effect of acute kidney injury on a patient’s prognosis during and after the ICU admission.

Methods

A retrospective cohort of patients admitted to a Singaporean surgical ICU between 2015 to 2017 was collated. Patients undergoing chronic dialysis were excluded. The outcomes were occurrence of ICU acute kidney injury, hospital mortality and one-year mortality. Predictors were identified using decision tree algorithms. Confirmatory analysis was performed using a generalized structural equation model.

Results

A total of 201/940 (21.4%) patients suffered acute kidney injury in the ICU. Low ICU haemoglobin levels, low ICU bicarbonate levels, ICU sepsis, low pre-ICU estimated glomerular filtration rate (eGFR) and congestive heart failure was associated with the occurrence of ICU acute kidney injury. Acute kidney injury, together with old age (> 70 years), and low pre-ICU eGFR, was associated with hospital mortality, and one-year mortality. ICU haemoglobin level was discretized into 3 risk categories for acute kidney injury: high risk (haemoglobin ≤9.7 g/dL), moderate risk (haemoglobin between 9.8–12 g/dL), and low risk (haemoglobin > 12 g/dL).

Conclusion

The occurrence of acute kidney injury is common in the surgical ICU. It is associated with a higher risk for hospital and one-year mortality. These results, in particular the identified haemoglobin thresholds, are relevant for stratifying a patient’s acute kidney injury risk.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kerr M, Bedford M, Matthews B, O'Donoghue D. The economic impact of acute kidney injury in England. Nephrol Dial Transplant. 2014;29(7):1362–8.CrossRef Kerr M, Bedford M, Matthews B, O'Donoghue D. The economic impact of acute kidney injury in England. Nephrol Dial Transplant. 2014;29(7):1362–8.CrossRef
2.
go back to reference Horkan CM, Purtle SW, Mendu ML, Moromizato T, Gibbons FK, Christopher KB. The association of acute kidney injury in the critically ill and postdischarge outcomes: a cohort study*. Crit Care Med. 2015;43(2):354–64.CrossRef Horkan CM, Purtle SW, Mendu ML, Moromizato T, Gibbons FK, Christopher KB. The association of acute kidney injury in the critically ill and postdischarge outcomes: a cohort study*. Crit Care Med. 2015;43(2):354–64.CrossRef
3.
go back to reference Trongtrakul K, Sawawiboon C, Wang AY, Chitsomkasem A, Limphunudom P, Kurathong S, et al. Acute kidney injury in critically ill surgical patients: Epidemiology, risk factors and outcomes. Nephrology (Carlton, Vic). 2019;24(1):39–46.CrossRef Trongtrakul K, Sawawiboon C, Wang AY, Chitsomkasem A, Limphunudom P, Kurathong S, et al. Acute kidney injury in critically ill surgical patients: Epidemiology, risk factors and outcomes. Nephrology (Carlton, Vic). 2019;24(1):39–46.CrossRef
4.
go back to reference Harris DG, McCrone MP, Koo G, Weltz AS, Chiu WC, Scalea TM, et al. Epidemiology and outcomes of acute kidney injury in critically ill surgical patients. J Crit Care. 2015;30(1):102–6.CrossRef Harris DG, McCrone MP, Koo G, Weltz AS, Chiu WC, Scalea TM, et al. Epidemiology and outcomes of acute kidney injury in critically ill surgical patients. J Crit Care. 2015;30(1):102–6.CrossRef
5.
go back to reference Medve L, Gondos T. Epidemiology of postoperative acute kidney injury in Hungarian intensive care units: an exploratory analysis. Ren Fail. 2012;34(9):1074–8.CrossRef Medve L, Gondos T. Epidemiology of postoperative acute kidney injury in Hungarian intensive care units: an exploratory analysis. Ren Fail. 2012;34(9):1074–8.CrossRef
7.
go back to reference Mehta RL, Kellum JA, Shah SV, Molitoris BA, Ronco C, Warnock DG, et al. Acute kidney injury network: report of an initiative to improve outcomes in acute kidney injury. Crit Care. 2007;11(2):R31.CrossRef Mehta RL, Kellum JA, Shah SV, Molitoris BA, Ronco C, Warnock DG, et al. Acute kidney injury network: report of an initiative to improve outcomes in acute kidney injury. Crit Care. 2007;11(2):R31.CrossRef
8.
go back to reference Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13(10):818–29.CrossRef Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13(10):818–29.CrossRef
9.
go back to reference Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest. 1992;101(6):1644–55. https://pubmed.ncbi.nlm.nih.gov/1303622/. Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest. 1992;101(6):1644–55. https://​pubmed.​ncbi.​nlm.​nih.​gov/​1303622/​.
10.
go back to reference Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604–12.CrossRef Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604–12.CrossRef
11.
go back to reference Wong LY, Liew AST, Weng WT, Lim CK, Vathsala A, Toh M. Projecting the burden of chronic kidney disease in a developed country and its implications on public health. Int J Nephrol. 2018;2018:5196285.CrossRef Wong LY, Liew AST, Weng WT, Lim CK, Vathsala A, Toh M. Projecting the burden of chronic kidney disease in a developed country and its implications on public health. Int J Nephrol. 2018;2018:5196285.CrossRef
12.
go back to reference Low SK, Sum CF, Yeoh LY, Tavintharan S, Ng XW, Lee SB, et al. Prevalence of chronic kidney disease in adults with type 2 diabetes mellitus. Ann Acad Med Singap. 2015;44(5):164–71.PubMed Low SK, Sum CF, Yeoh LY, Tavintharan S, Ng XW, Lee SB, et al. Prevalence of chronic kidney disease in adults with type 2 diabetes mellitus. Ann Acad Med Singap. 2015;44(5):164–71.PubMed
13.
go back to reference Breiman L, Friedman J, Stone CJ, Olshen RA. Classification and Regression Trees: Taylor & Francis; 1984. Breiman L, Friedman J, Stone CJ, Olshen RA. Classification and Regression Trees: Taylor & Francis; 1984.
14.
go back to reference Rabe-Hesketh S, Skrondal A, Pickles A. Generalized multilevel structural equation modeling. Psychometrika. 2004;69(2):167–90.CrossRef Rabe-Hesketh S, Skrondal A, Pickles A. Generalized multilevel structural equation modeling. Psychometrika. 2004;69(2):167–90.CrossRef
15.
go back to reference Westland JC. Lower bounds on sample size in structural equation modeling. Electron Commer Res Appl. 2010;9(6):476–87.CrossRef Westland JC. Lower bounds on sample size in structural equation modeling. Electron Commer Res Appl. 2010;9(6):476–87.CrossRef
16.
go back to reference Kuhn V, Diederich L, Keller TCS, Kramer CM, Luckstadt W, Panknin C, et al. Red blood cell function and dysfunction: redox regulation, nitric oxide metabolism, Anemia. Antioxid Redox Signal. 2017;26(13):718–42.CrossRef Kuhn V, Diederich L, Keller TCS, Kramer CM, Luckstadt W, Panknin C, et al. Red blood cell function and dysfunction: redox regulation, nitric oxide metabolism, Anemia. Antioxid Redox Signal. 2017;26(13):718–42.CrossRef
17.
go back to reference Kanagasundaram NS. Pathophysiology of ischaemic acute kidney injury. Ann Clin Biochem. 2015;52(Pt 2):193–205.CrossRef Kanagasundaram NS. Pathophysiology of ischaemic acute kidney injury. Ann Clin Biochem. 2015;52(Pt 2):193–205.CrossRef
18.
go back to reference Han SS, Baek SH, Ahn SY, Chin HJ, Na KY, Chae DW, et al. Anemia is a risk factor for acute kidney injury and long-term mortality in critically ill patients. Tohoku J Exp Med. 2015;237(4):287–95.CrossRef Han SS, Baek SH, Ahn SY, Chin HJ, Na KY, Chae DW, et al. Anemia is a risk factor for acute kidney injury and long-term mortality in critically ill patients. Tohoku J Exp Med. 2015;237(4):287–95.CrossRef
20.
go back to reference Gujadhur A, Tiruvoipati R, Cole E, Malouf S, Ansari ES, Wong K. Serum bicarbonate may independently predict acute kidney injury in critically ill patients: an observational study. World J Crit Care Med. 2015;4(1):71–6.CrossRef Gujadhur A, Tiruvoipati R, Cole E, Malouf S, Ansari ES, Wong K. Serum bicarbonate may independently predict acute kidney injury in critically ill patients: an observational study. World J Crit Care Med. 2015;4(1):71–6.CrossRef
21.
go back to reference Magalhaes PA, de Brito TS, Freire RS, da Silva MT, dos Santos AA, Vale ML, et al. Metabolic acidosis aggravates experimental acute kidney injury. Life Sci. 2016;146:58–65.CrossRef Magalhaes PA, de Brito TS, Freire RS, da Silva MT, dos Santos AA, Vale ML, et al. Metabolic acidosis aggravates experimental acute kidney injury. Life Sci. 2016;146:58–65.CrossRef
22.
go back to reference Lo KB, Garvia V, Stempel JM, Ram P, Rangaswami J. Bicarbonate use and mortality outcome among critically ill patients with metabolic acidosis: a meta analysis. Heart Lung J Crit Care. 2020;49(2):167–74.CrossRef Lo KB, Garvia V, Stempel JM, Ram P, Rangaswami J. Bicarbonate use and mortality outcome among critically ill patients with metabolic acidosis: a meta analysis. Heart Lung J Crit Care. 2020;49(2):167–74.CrossRef
23.
go back to reference Haase M, Haase-Fielitz A, Bellomo R, Devarajan P, Story D, Matalanis G, et al. Sodium bicarbonate to prevent increases in serum creatinine after cardiac surgery: a pilot double-blind, randomized controlled trial. Crit Care Med. 2009;37(1):39–47.CrossRef Haase M, Haase-Fielitz A, Bellomo R, Devarajan P, Story D, Matalanis G, et al. Sodium bicarbonate to prevent increases in serum creatinine after cardiac surgery: a pilot double-blind, randomized controlled trial. Crit Care Med. 2009;37(1):39–47.CrossRef
24.
go back to reference Ghauri SK, Javaeed A, Mustafa KJ, Podlasek A, Khan AS. Bicarbonate therapy for critically ill patients with metabolic acidosis: a systematic review. Cureus. 2019;11(3):e4297.PubMedPubMedCentral Ghauri SK, Javaeed A, Mustafa KJ, Podlasek A, Khan AS. Bicarbonate therapy for critically ill patients with metabolic acidosis: a systematic review. Cureus. 2019;11(3):e4297.PubMedPubMedCentral
25.
go back to reference Dunn JO, Mythen MG, Grocott MP. Physiology of oxygen transport. BJA Educ. 2016;16(10):341–8.CrossRef Dunn JO, Mythen MG, Grocott MP. Physiology of oxygen transport. BJA Educ. 2016;16(10):341–8.CrossRef
26.
go back to reference Mohsenin V. Practical approach to detection and management of acute kidney injury in critically ill patient. J Intensive Care. 2017;5:57.CrossRef Mohsenin V. Practical approach to detection and management of acute kidney injury in critically ill patient. J Intensive Care. 2017;5:57.CrossRef
Metadata
Title
Assessment of acute kidney injury risk using a machine-learning guided generalized structural equation model: a cohort study
Authors
Wen En Joseph Wong
Siew Pang Chan
Juin Keith Yong
Yen Yu Sherlyn Tham
Jie Rui Gerald Lim
Ming Ann Sim
Chai Rick Soh
Lian Kah Ti
Tsong Huey Sophia Chew
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Nephrology / Issue 1/2021
Electronic ISSN: 1471-2369
DOI
https://doi.org/10.1186/s12882-021-02238-9

Other articles of this Issue 1/2021

BMC Nephrology 1/2021 Go to the issue