Skip to main content
Top
Published in: BMC Nephrology 1/2019

Open Access 01-12-2019 | Chronic Kidney Disease | Research article

Urinary cell-free mitochondrial and nuclear deoxyribonucleic acid correlates with the prognosis of chronic kidney diseases

Authors: Chia-Chu Chang, Ping-Fang Chiu, Chia-Lin Wu, Cheng-Ling Kuo, Ching-Shan Huang, Chin-San Liu, Ching-Hui Huang

Published in: BMC Nephrology | Issue 1/2019

Login to get access

Abstract

Introduction

Cell-free deoxyribonucleic acid DNA (cf-DNA) in urine is promising due to the advantage of urine as an easily obtained and non-invasive sample source over tissue and blood. In clinical practice, it is important to identify non-invasive biomarkers of chronic kidney disease (CKD) in monitoring and surveillance of disease progression. Information is limited, however, regarding the relationship between urine and plasma cf-DNA and the renal outcome in CKD patients.

Methods

One hundred and thirty-one CKD patients were enrolled between January 2016 and September 2018. Baseline urine and plasma cell-free mitochondrial DNA (cf-mtDNA) and cell-free nuclear DNA (cf-nDNA) were isolated using quantitative real-time PCR. Estimated glomerular filtration rate (eGFR) measurement was performed at baseline and 6-month follow-up. Favorable renal outcome was defined as eGFR at 6 months minus baseline eGFR> = 0. Receiver operator characteristics (ROC) curve analysis was performed to assess different samples of cf-DNA to predict favorable renal outcomes at 6 months. A multivariate linear regression model was used to evaluate independent associations between possible predictors and different samples of cf-DNA.

Results

Patients with an advanced stage of CKD has significantly low plasma cf-nDNA and high plasma neutrophil gelatinase-associated lipocalin (NGAL) levels. Low urine cf-mtDNA, cf-nDNA levels and low plasma NGAL were significantly correlated with favorable renal outcomes at 6 months. The urine albumin-creatinine ratio (ACR) or urine protein-creatinine ratio (PCR) level is a robust predictor of cf-mtDNA and cf-nDNA in CKD patients. Baseline urine levels of cf-mtDNA and cf-nDNA could predict renal outcomes at 6 months.

Conclusions

Urinary cf-mtDNA and cf-nDNA may provide novel prognostic biomarkers for renal outcome in CKD patients. The levels of plasma cf-nDNA and plasma NGAL are significantly correlated with the severity of CKD.

Literature
  1. Nallu A, Sharma S, Ramezani A, Muralidharan J, Raj D. Gut microbiome in chronic kidney disease: challenges and opportunities. Transl Res. 2017;179:24–37. https://​doi.​org/​10.​1016/​j.​trsl.​2016.​04.​007.View ArticlePubMed
  2. Levey AS, Eckardt KU, Tsukamoto Y, Levin A, Coresh J, Rossert J, et al. Definition and classification of chronic kidney disease: a position statement from kidney disease: improving global outcomes (KDIGO). Kidney Int. 2005;67:2089–100. https://​doi.​org/​10.​1111/​j.​1523-1755.​2005.​00365.​x.View ArticlePubMed
  3. Meguid El Nahas A, Bello AK. Chronic kidney disease: the global challenge. Lancet. 2005;365:331–40. https://​doi.​org/​10.​1016/​S0140-6736(05)17789-7.View ArticlePubMed
  4. Bello AK, Nwankwo E, El Nahas AM. Prevention of chronic kidney disease: a global challenge. Kidney Int Suppl. 2005;98:S11–7. https://​doi.​org/​10.​1111/​j.​1523-1755.​2005.​09802.​x.View Article
  5. Gansevoort RT, Correa-Rotter R, Hemmelgarn BR, Jafar TH, Heerspink HJ, Mann JF, et al. Chronic kidney disease and cardiovascular risk: epidemiology, mechanisms, and prevention. Lancet. 2013;382:339–52. https://​doi.​org/​10.​1016/​S0140-6736(13)60595-4.View ArticlePubMed
  6. Che R, Yuan Y, Huang S, Zhang A. Mitochondrial dysfunction in the pathophysiology of renal diseases. Am J Phys Renal Phys. 2013;306:F367–78. https://​doi.​org/​10.​1152/​ajprenal.​00571.​2013.View Article
  7. Yuan Y, Chen Y, Zhang P, Huang S, Zhu C, Ding G, et al. Mitochondrial dysfunction accounts for aldosterone-induced epithelial-to-mesenchymal transition of renal proximal tubular epithelial cells. Free Radic Biol Med. 2012;53:30–43. https://​doi.​org/​10.​1016/​j.​freeradbiomed.​2012.​03.​015.View ArticlePubMed
  8. Zhang A, Jia Z, Guo X, Yang T. Aldosterone induces epithelial mesenchymal transition via ROS of mitochondrial origin. Am J Physiol Ren Physiol. 2007;293:F723–31. https://​doi.​org/​10.​1152/​ajprenal.​00480.​2006.View Article
  9. Emma F, Montini G, Parikh SM, Salviati L. Mitochondrial dysfunction in inherited renal disease and acute kidney injury. Nat Rev Nephrol. 2016;12:267–80. https://​doi.​org/​10.​1038/​nrneph.​2015.​214.View ArticlePubMedPubMed Central
  10. Zhu C, Huang S, Yuan Y, Ding G, Chen R, Liu B, et al. Mitochondrial dysfunction mediates aldosterone-induced podocyte damage. A therapeutic target of PPAR gamma. Am J Pathol. 2011;178:2020–31. https://​doi.​org/​10.​1016/​j.​ajpath.​2011.​01.​029.View ArticlePubMedPubMed Central
  11. He L, Wei Q, Liu J, Yi M, Liu Y, Liu H, et al. AKI on CKD: heightened injury, suppressed repair, and the underlying mechanisms. Kidney Int. 2017;92:1071–83. https://​doi.​org/​10.​1016/​j.​kint.​2017.​06.​030.View ArticlePubMedPubMed Central
  12. Kawakami T, Gomez IG, Ren S, Hudkins K, Roach A, Alpers CE, et al. Deficient autophagy results in mitochondrial dysfunction and FSGS. J Am Soc Nephrol. 2015;26:1040–52. https://​doi.​org/​10.​1681/​ASN.​2013111202.View ArticlePubMed
  13. Gong W, Mao S, Yu J, Song J, Jia Z, Huang S, et al. NLRP3 deletion protects against renal fibrosis and attenuates mitochondrial abnormality in mouse with 5/6 nephrectomy. Am J Phys Renal Phys. 2016;310:F1081–8. https://​doi.​org/​10.​1152/​ajprenal.​00534.​2015.View Article
  14. Hallan S, Sharma K. The role of mitochondria in diabetic kidney disease. Curr Diab Rep. 2016;16:61. https://​doi.​org/​10.​1007/​s11892-016-0748-0.View ArticlePubMed
  15. Higgins GC, Coughlan MT. Mitochondrial dysfunction and mitophagy: the beginning and end to diabetic nephropathy? Br J Pharmacol. 2014;171:1917–42. https://​doi.​org/​10.​1111/​bph.​12503.View ArticlePubMedPubMed Central
  16. Mandel P, Metais P. Les acides du plasma sanguin chez l’homme. C R Acad Sci Paris. 1948;142:241–3 PMID:18875018.
  17. Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. 2010;464:104–7. https://​doi.​org/​10.​1038/​nature08780.View ArticlePubMedPubMed Central
  18. Oka T, Hikoso S, Yamaguchi O, Taneike M, Takeda T, Tamai T, et al. Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature. 2012;485:251–U142. https://​doi.​org/​10.​1038/​nature10992.View ArticlePubMedPubMed Central
  19. Nakahira K, Kyung SY, Rogers AJ, Gazourian L, Youn S, Massaro AF, et al. Circulating mitochondrial DNA in patients in the ICU as a marker of mortality: derivation and validation. PLoS Med. 2013;10:e1001577. https://​doi.​org/​10.​1371/​journal.​pmed.​1001577.View ArticlePubMedPubMed Central
  20. Tin A, Grams ME, Ashar FN, Lane JA, Rosenberg AZ, Grove ML, et al. Association between mitochondrial DNA copy number in peripheral blood and incident CKD in the atherosclerosis risk in communities study. J Am Soc Nephrol. 2016;27:2467–73. https://​doi.​org/​10.​1681/​ASN.​2015060661.View ArticlePubMedPubMed Central
  21. Cao H, Ye H, Sun Z, Shen X, Song Z, Wu X, et al. Circulatory mitochondrial DNA is a pro-inflammatory agent in maintenance hemodialysis patients. PLoS One. 2014;9:e113179. https://​doi.​org/​10.​1371/​journal.​pone.​0113179.View ArticlePubMedPubMed Central
  22. Lo Y.M., Rainer T.H., Chan L.Y., Hjelm N.M., Cocks R.A.. (2000) Plasma DNA as a prognostic marker in trauma patients. Clin Chem 46, 319–323. PMID: 10702517.
  23. Rainer TH, Lam NYL. Circulating nucleic acids and critical illness. Ann N Y Acad Sci. 2006;1075:271–7. https://​doi.​org/​10.​1196/​annals.​1368.​035.View ArticlePubMed
  24. Antonatos D, Patsilinakos S, Spanodimos S, Korkonikitas P, Tsigas D. Cell-free DNA levels as a prognostic marker in acute myocardial infarction. Ann N Y Acad Sci. 2006;1075:278–81. https://​doi.​org/​10.​1196/​annals.​1368.​037.View ArticlePubMed
  25. Rhodes A, Wort SJ, Thomas H, Collinson P, Bennett ED. Plasma DNA concentration as a predictor of mortality and sepsis in critically ill patients. Crit Care. 2006;10:R60. https://​doi.​org/​10.​1186/​cc4894.View ArticlePubMedPubMed Central
  26. Saukkonen K, Lakkisto P, Varpula M, Varpula T, Voipio-Pulkki LM, Pettilä V, et al. Association of cell-free plasma DNA with hospital mortality and organ dysfunction in intensive care unit patients. Intensive Care Med. 2007;33:1624–7. https://​doi.​org/​10.​1007/​s00134-007-0686-z.View ArticlePubMed
  27. Hurtado-Roca Y, Ledesma M, Gonzalez-Lazaro M, Moreno-Loshuertos R, Fernandez-Silva P, Enriquez JA, et al. Adjusting MtDNA quantification in whole blood for peripheral blood platelet and leukocyte counts. PLoS One. 2016;11:e0163770. https://​doi.​org/​10.​1371/​journal.​pone.​0163770.View ArticlePubMedPubMed Central
  28. Urata M, Koga-Wada Y, Kayamori Y, Kang D. Platelet contamination causes large variation as well as overestimation of mitochondrial DNA content of peripheral blood mononuclear cells. Ann Clin Biochem. 2008;45:513–4. https://​doi.​org/​10.​1258/​acb.​2008.​008008.View ArticlePubMed
  29. Lee JE, Park H, Ju YS, Kwak M, Kim JI, Oh HY, et al. Higher mitochondrial DNA copy number is associated with lower prevalence of microalbuminuria. Exp Mol Med. 2009;41:253–8. https://​doi.​org/​10.​3858/​emm.​2009.​41.​4.​028.View ArticlePubMedPubMed Central
  30. Lu T, Li J. (2017) Clinical applications of urinary cell-free DNA in cancer: current insights and promising future. Am J Cancer Res 7, 2318–2332. PubMed PMID: 29218253; PubMed Central PMCID: PMC5714758.
  31. Ho PWL, Pang WF, Luk CCW, Ng JKC, Chow KM, Kwan BCH, et al. Urinary mitochondrial DNA level as a biomarker of acute kidney injury. Kidney Dis. 2017;3:78–83. https://​doi.​org/​10.​1159/​000475883.View Article
  32. Whitaker RM, Stallons LJ, Kneff JE, Alge JL, Harmon JL, Rahn JJ, et al. Urinary mitochondrial DNA is a biomarker of mitochondrial disruption and renal dysfunction in acute kidney injury. Kidney Int. 2015;88:1336–44. https://​doi.​org/​10.​1038/​ki.​2015.​240.View ArticlePubMedPubMed Central
  33. Botezatu I, Serdyuk O, Potapova G, Shelepov V, Alechina R, Molyaka Y, et al. (2000) Genetic analysis of DNA excreted in urine: a new approach for detecting specific genomic DNA sequences from cells dying in an organism. Clin Chem 46, 1078–1084. PMID: 10926886.
  34. Lichtenstein AV, Melkonyan HS, Tomei LD, Umansky SR. Circulating nucleic acids and apoptosis. Ann N Y Acad Sci. 2001;945:239–49. https://​doi.​org/​10.​1111/​j.​1749-6632.​2001.​tb03892.​x.View ArticlePubMed
  35. Levey, A.S., Coresh, J., Balk, E., Kausz, A.T., Levin, A., Steffes, M.W., et al. (2003) National Kidney Foundation practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Ann Intern Med 139, 137–147. PMID: 12859163.View ArticlePubMed
  36. Coresh J, Turin TC, Matsushita K, Sang Y, Ballew SH, Appel LJ, et al. Decline in estimated glomerular filtration rate and subsequent risk of end-stage renal disease and mortality. JAMA. 2014;311:2518–31. https://​doi.​org/​10.​1001/​jama.​2014.​6634.View ArticlePubMedPubMed Central
  37. Lo YM, Tein MS, Lau TK, Haines CJ, Leung TN, Poon PM, et al. (1998) Quantitative analysis of fetal DNA in maternal plasma and serum: implications for noninvasive prenatal diagnosis. Am J Hum Genet 62, 768–775. PubMed PMID: 9529358; PubMed Central PMCID: PMC1377040.View ArticlePubMed
  38. García Moreira V, Prieto García B, de la Cera Martínez T, Alvarez Menéndez FV. Elevated transrenal DNA (cell-free urine DNA) in patients with urinary tract infection compared to healthy controls. Clin Biochem. 2009;42:729–31. https://​doi.​org/​10.​1016/​j.​clinbiochem.​2008.​12.​021.View ArticlePubMed
  39. Wei PZ, Kwan BCH, Chow KM, Cheng PMS, Luk CCW, Li PKT, et al. Urinary mitochondrial DNA level is an indicator of intra-renal mitochondrial depletion and renal scarring in diabetic nephropathy. Nephrol Dial Transplant. 2018;33:784–8. https://​doi.​org/​10.​1093/​ndt/​gfx339.View ArticlePubMed
  40. Green DR, Llambi F. Cell death signaling. Cold Spring Harb Perspect Biol. 2015;7:a006080. https://​doi.​org/​10.​1101/​cshperspect.​a006080.View ArticlePubMedPubMed Central
  41. Tower J. Programmed cell death in aging. Ageing Res Rev. 2015;23:90–100. https://​doi.​org/​10.​1016/​j.​arr.​2015.​04.​002.View ArticlePubMedPubMed Central
  42. Madeo F, Zimmermann A, Kroemer G, Kroemer G. Essential role for autophagy in life span extension. J Clin Invest. 2015;125:85–93. https://​doi.​org/​10.​1172/​JCI73946.View ArticlePubMedPubMed Central
  43. Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy. 2016;12:1–222. https://​doi.​org/​10.​1080/​15548627.​2015.​1100356.View ArticlePubMedPubMed Central
  44. Kroemer G, Marino G, Levine B. Autophagy and the integrated stress response. Mol Cell. 2010;40:280–93. https://​doi.​org/​10.​1016/​j.​molcel.​2010.​09.​023.View ArticlePubMedPubMed Central
  45. Jin J, Ku YH, Kim Y, Kim Y, Kim K, Lee JY, et al. Differential proteome profiling using iTRAQ in microalbuminuric and normoalbuminuric type 2 diabetic patients. Exp Diabetes Res. 2012;2012:168602. https://​doi.​org/​10.​1155/​2012/​168602.View ArticlePubMedPubMed Central
  46. Varghese SA, Powell TB, Budisavljevic MN, Oates JC, Raymond JR, Almeida JS, et al. Urine biomarkers predict the cause of glomerular disease. J Am Soc Nephrol. 2007;18:913–22. https://​doi.​org/​10.​1681/​ASN.​2006070767.View ArticlePubMed
  47. Guo Z, Liu X, Li M, Shao C, Tao J, Sun W, et al. Differential urinary glycoproteome analysis of type 2 diabetic nephropathy using 2D-LC-MS/MS and iTRAQ quantification. J Transl Med. 2015;13:371. https://​doi.​org/​10.​1186/​s12967-015-0712-9.View ArticlePubMedPubMed Central
  48. Chien HY, Chen CY, Chiu YH, Lin YC, Li WC. Differential microRNA profiles predict diabetic nephropathy progression in Taiwan. Int J Med Sci. 2016;13:457–65. https://​doi.​org/​10.​7150/​ijms.​15548.View ArticlePubMedPubMed Central
  49. Harder JL, Hodgin JB, Kretzler M. Integrative biology of diabetic kidney disease. Kidney Dis (Basel). 2015;1:194–203. https://​doi.​org/​10.​1159/​000439196.View Article
  50. Nickolas TL, O’Rourke MJ, Yang J, Sise ME, Canetta PA, Barasch N, et al. Sensitivity and specificity of a single emergency department measurement of urinary neutrophil gelatinase-associated lipocalin for diagnosing acute kidney injury. Ann Intern Med. 2008;148:810–9. 18519927.View ArticlePubMedPubMed Central
  51. Paragas N, Qiu A, Zhang Q, Samstein B, Deng SX, Schmidt-Ott KM, et al. The Ngal reporter mouse detects the response of the kidney to injury in real time. Nat Med. 2011;17:216–22. https://​doi.​org/​10.​1038/​nm.​2290.View ArticlePubMedPubMed Central
  52. Bolignano D, Lacquaniti A, Coppolino G, Donato V, Campo S, Fazio MR, et al. Neutrophil gelatinase-associated lipocalin (NGAL) and progression of chronic kidney disease. Clin J Am Soc Nephrol. 2009;4:337–44. https://​doi.​org/​10.​2215/​CJN.​03530708.View ArticlePubMedPubMed Central
  53. Malyszko J, Malyszko JS, Bachorzewska-Gajewska H, Poniatowski B, Dobrzycki S, Mysliwiec M. Neutrophil gelatinase associated lipocalin is a new and sensitive marker of kidney function in chronic kidney disease patients and renal allograft recipients. Transplant Proc. 2009;41:158–61. https://​doi.​org/​10.​1016/​j.​transproceed.​2008.​10.​088.View ArticlePubMed
  54. Liu KD, Yang W, Anderson AH, Feldman HI, Demirjian S, Hamano T, et al. Chronic renal insufficiency cohort (CRIC) study investigators: urine neutrophil gelatinase–associated lipocalin levels do not improve risk prediction of progressive chronic kidney disease. Kidney Int. 2013;83:909–14. https://​doi.​org/​10.​1038/​ki.​2012.​458.View ArticlePubMedPubMed Central
  55. Mishra, J., Qing, M., Prada, A., Zahedi, K., Yang, Y., Barasch, J., et al. (2003) Identification of NGAL as a novel early urinary marker for ischemic renal injury. J Am Soc Nephrol 14, 2534–2543. PMID: 14514731.
  56. Mori K, Lee HT, Rapoport D, Drexler I, Foster K, Yang J, et al. Endocytic delivery of lipocalin-siderophore-iron complex rescues the kidney from ischemia-reperfusion injury. J Clin Invest. 2005;115:610–21. https://​doi.​org/​10.​1172/​JCI23056.View ArticlePubMedPubMed Central
Metadata
Title
Urinary cell-free mitochondrial and nuclear deoxyribonucleic acid correlates with the prognosis of chronic kidney diseases
Authors
Chia-Chu Chang
Ping-Fang Chiu
Chia-Lin Wu
Cheng-Ling Kuo
Ching-Shan Huang
Chin-San Liu
Ching-Hui Huang
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Nephrology / Issue 1/2019
Electronic ISSN: 1471-2369
DOI
https://doi.org/10.1186/s12882-019-1549-x

Other articles of this Issue 1/2019

BMC Nephrology 1/2019 Go to the issue