Skip to main content
Top
Published in: BMC Nephrology 1/2019

Open Access 01-12-2019 | Nutrition | Research article

Association of serum chromium levels with malnutrition in hemodialysis patients

Authors: Ching-Wei Hsu, Cheng-Hao Weng, Cheng-Chia Lee, Tzung-Hai Yen, Wen-Hung Huang

Published in: BMC Nephrology | Issue 1/2019

Login to get access

Abstract

Background

Chromium is an essential trace metal that reduces oxidative stress and inflammation. In patients undergoing maintenance hemodialysis (MHD), a correlation among chromium exposure, inflammation, and malnutrition remains unclear. This study examined the possible effects of serum chromium levels (SCLs) in MHD patients.

Methods

Initially, 732 MHD patients in dialysis centers were recruited. A total of 647 patients met the inclusion criteria and were stratified by SCL into four equal-sized groups: first quartile (< 0.29 μg/L), second quartile (0.29–0.56 μg/L), third quartile (0.57–1.06 μg/L), and fourth quartile (> 1.06 μg/L). Demographic, biochemical, and dialysis-related data were obtained for analyses. The analysis included nutritional and inflammatory markers.

Results

As compared with the highest quartile group, more subjects in the lowest quartile group were of an older age; had lower hemoglobin and creatinine levels; had a higher prevalence of DM and malnutrition (serum albumin level < 3.6 g/dL); and higher serum transferrin saturation and ferritin levels. A stepwise multiple linear regression analysis revealed a significant negative correlation between malnutrition and SCL (β coefficient = − 0.129, p = 0.012) and negative associations among body mass index (β coefficient = − 0.010, p = 0.041), ferritin (β coefficient = − 0.107, p = 0.001) and SCL. A multivariate logistic regression analysis also demonstrated a negative correlation between malnutrition and SCL. With a 10-fold increase in SCL, the risk ratio of malnutrition was 0.49 (95% confidence interval: 0.25–0.96; p = 0.039).

Conclusions

SCL is significantly associated with malnutrition in MHD patients. Further evaluation of the relationship between clinical outcomes (morbidity/mortality) and SCL is necessitated.
Literature
1.
go back to reference Lipko M, Debski B. Mechanism of insulin-like effect of chromium (III) ions on glucose uptake in C2C12 mouse myotubes involves ROS formation. J Trace Elem Med Biol. 2018;45:171–5.CrossRef Lipko M, Debski B. Mechanism of insulin-like effect of chromium (III) ions on glucose uptake in C2C12 mouse myotubes involves ROS formation. J Trace Elem Med Biol. 2018;45:171–5.CrossRef
2.
go back to reference Ngala RA, Awe MA, Nsiah P. The effects of plasma chromium on lipid profile, glucose metabolism and cardiovascular risk in type 2 diabetes mellitus. A case - control study. PLoS One. 2018;13(7):e0197977.CrossRef Ngala RA, Awe MA, Nsiah P. The effects of plasma chromium on lipid profile, glucose metabolism and cardiovascular risk in type 2 diabetes mellitus. A case - control study. PLoS One. 2018;13(7):e0197977.CrossRef
3.
go back to reference Mamyrbaev AA, Dzharkenov TA, Imangazina ZA, Satybaldieva UA. Mutagenic and carcinogenic actions of chromium and its compounds. Environ Health Prev Med. 2015;20(3):159–67.CrossRef Mamyrbaev AA, Dzharkenov TA, Imangazina ZA, Satybaldieva UA. Mutagenic and carcinogenic actions of chromium and its compounds. Environ Health Prev Med. 2015;20(3):159–67.CrossRef
5.
go back to reference Lukaski HC, Siders WA, Penland JG. Chromium picolinate supplementation in women: effects on body weight, composition, and iron status. Nutrition. 2007;23(3):187–95.CrossRef Lukaski HC, Siders WA, Penland JG. Chromium picolinate supplementation in women: effects on body weight, composition, and iron status. Nutrition. 2007;23(3):187–95.CrossRef
6.
go back to reference Vincent JB. New evidence against chromium as an essential trace element. J Nutr. 2017;147(12):2212–9.CrossRef Vincent JB. New evidence against chromium as an essential trace element. J Nutr. 2017;147(12):2212–9.CrossRef
7.
go back to reference Prodanchuk M, Makarov O, Pisarev E, Sheiman B, Kulyzkiy M. Disturbances of trace element metabolism in ESRD patients receiving hemodialysis and hemodiafiltration. Cent European J Urol. 2014;66(4):472–6.PubMed Prodanchuk M, Makarov O, Pisarev E, Sheiman B, Kulyzkiy M. Disturbances of trace element metabolism in ESRD patients receiving hemodialysis and hemodiafiltration. Cent European J Urol. 2014;66(4):472–6.PubMed
8.
go back to reference Ikizler TA, Cano NJ, Franch H, Fouque D, Himmelfarb J, Kalantar-Zadeh K, et al. Prevention and treatment of protein energy wasting in chronic kidney disease patients: a consensus statement by the International Society of Renal Nutrition and Metabolism. Kidney Int. 2013;84(6):1096–107.CrossRef Ikizler TA, Cano NJ, Franch H, Fouque D, Himmelfarb J, Kalantar-Zadeh K, et al. Prevention and treatment of protein energy wasting in chronic kidney disease patients: a consensus statement by the International Society of Renal Nutrition and Metabolism. Kidney Int. 2013;84(6):1096–107.CrossRef
9.
go back to reference Lin JL, Lin-Tan DT, Yen TH, Hsu CW, Jenq CC, Chen KH, et al. Blood lead levels, malnutrition, inflammation, and mortality in patients with diabetes treated by long-term hemodialysis. Am J Kidney Dis. 2008;51(1):107–15.CrossRef Lin JL, Lin-Tan DT, Yen TH, Hsu CW, Jenq CC, Chen KH, et al. Blood lead levels, malnutrition, inflammation, and mortality in patients with diabetes treated by long-term hemodialysis. Am J Kidney Dis. 2008;51(1):107–15.CrossRef
10.
go back to reference Savarino L, Greco M, Cenni E, Cavasinni L, Rotini R, Baldini N, et al. Differences in ion release after ceramic-on-ceramic and metal-on-metal total hip replacement. Medium-term follow-up. J Bone Joint Surg Br. 2006;88(4):472–6.CrossRef Savarino L, Greco M, Cenni E, Cavasinni L, Rotini R, Baldini N, et al. Differences in ion release after ceramic-on-ceramic and metal-on-metal total hip replacement. Medium-term follow-up. J Bone Joint Surg Br. 2006;88(4):472–6.CrossRef
11.
go back to reference Sargent JA. Control of dialysis by a single-pool urea model: the National Cooperative Dialysis Study. Kidney Int Suppl. 1983;13:S19–25. Sargent JA. Control of dialysis by a single-pool urea model: the National Cooperative Dialysis Study. Kidney Int Suppl. 1983;13:S19–25.
12.
go back to reference Daugirdas JT. The post: pre-dialysis plasma urea nitrogen ratio to estimate k.t/V and NPCR: mathematical modeling. Int J Artif Organs. 1989;12(7):411–9.PubMed Daugirdas JT. The post: pre-dialysis plasma urea nitrogen ratio to estimate k.t/V and NPCR: mathematical modeling. Int J Artif Organs. 1989;12(7):411–9.PubMed
13.
go back to reference Pupim LB, Caglar K, Hakim RM, Shyr Y, Ikizler TA. Uremic malnutrition is a predictor of death independent of inflammatory status. Kidney Int. 2004;66(5):2054–60.CrossRef Pupim LB, Caglar K, Hakim RM, Shyr Y, Ikizler TA. Uremic malnutrition is a predictor of death independent of inflammatory status. Kidney Int. 2004;66(5):2054–60.CrossRef
14.
go back to reference Wanner C, Metzger T. C-reactive protein a marker for all-cause and cardiovascular mortality in haemodialysis patients. Nephrol Dial Transplant. 2002;17(Suppl 8):29–32.CrossRef Wanner C, Metzger T. C-reactive protein a marker for all-cause and cardiovascular mortality in haemodialysis patients. Nephrol Dial Transplant. 2002;17(Suppl 8):29–32.CrossRef
15.
go back to reference Kalantar-Zadeh K. Recent advances in understanding the malnutrition-inflammation-cachexia syndrome in chronic kidney disease patients: what is next? Semin Dial. 2005;18(5):365–9.CrossRef Kalantar-Zadeh K. Recent advances in understanding the malnutrition-inflammation-cachexia syndrome in chronic kidney disease patients: what is next? Semin Dial. 2005;18(5):365–9.CrossRef
16.
go back to reference Anderson RA, Bryden NA, Polansky MM. Dietary chromium intake. Freely chosen diets, institutional diet, and individual foods. Biol Trace Elem Res. 1992;32:117–21.CrossRef Anderson RA, Bryden NA, Polansky MM. Dietary chromium intake. Freely chosen diets, institutional diet, and individual foods. Biol Trace Elem Res. 1992;32:117–21.CrossRef
17.
go back to reference Zemrani B, McCallum Z, Bines JE. Trace Element Provision in Parenteral Nutrition in Children: One Size Does Not Fit All. Nutrients. 2018;10(11).CrossRef Zemrani B, McCallum Z, Bines JE. Trace Element Provision in Parenteral Nutrition in Children: One Size Does Not Fit All. Nutrients. 2018;10(11).CrossRef
18.
go back to reference de Onis M, Zeitlhuber J, Martinez-Costa C. Nutritional disorders in the proposed 11th revision of the international classification of diseases: feedback from a survey of stakeholders. Public Health Nutr. 2016;19(17):3135–41.CrossRef de Onis M, Zeitlhuber J, Martinez-Costa C. Nutritional disorders in the proposed 11th revision of the international classification of diseases: feedback from a survey of stakeholders. Public Health Nutr. 2016;19(17):3135–41.CrossRef
19.
go back to reference Dioni L, Sucato S, Motta V, Iodice S, Angelici L, Favero C, et al. Urinary chromium is associated with changes in leukocyte miRNA expression in obese subjects. Eur J Clin Nutr. 2017;71(1):142–8.CrossRef Dioni L, Sucato S, Motta V, Iodice S, Angelici L, Favero C, et al. Urinary chromium is associated with changes in leukocyte miRNA expression in obese subjects. Eur J Clin Nutr. 2017;71(1):142–8.CrossRef
20.
go back to reference Tonelli M, Wiebe N, Hemmelgarn B, Klarenbach S, Field C, Manns B, et al. Trace elements in hemodialysis patients: a systematic review and meta-analysis. BMC Med. 2009;7:25.CrossRef Tonelli M, Wiebe N, Hemmelgarn B, Klarenbach S, Field C, Manns B, et al. Trace elements in hemodialysis patients: a systematic review and meta-analysis. BMC Med. 2009;7:25.CrossRef
21.
go back to reference Tsai TL, Kuo CC, Pan WH, Chung YT, Chen CY, Wu TN, et al. The decline in kidney function with chromium exposure is exacerbated with co-exposure to lead and cadmium. Kidney Int. 2017;92(3):710–20.CrossRef Tsai TL, Kuo CC, Pan WH, Chung YT, Chen CY, Wu TN, et al. The decline in kidney function with chromium exposure is exacerbated with co-exposure to lead and cadmium. Kidney Int. 2017;92(3):710–20.CrossRef
23.
go back to reference Smythe WR, Alfrey AC, Craswell PW, Crouch CA, Ibels LS, Kubo H, et al. Trace element abnormalities in chronic uremia. Ann Intern Med. 1982;96(3):302–10.CrossRef Smythe WR, Alfrey AC, Craswell PW, Crouch CA, Ibels LS, Kubo H, et al. Trace element abnormalities in chronic uremia. Ann Intern Med. 1982;96(3):302–10.CrossRef
24.
go back to reference Filler G, Felder S. Trace elements in dialysis. Pediatr Nephrol. 2014;29(8):1329–35.CrossRef Filler G, Felder S. Trace elements in dialysis. Pediatr Nephrol. 2014;29(8):1329–35.CrossRef
25.
go back to reference Norseth T. The carcinogenicity of chromium. Environ Health Perspect. 1981;40:121–30.CrossRef Norseth T. The carcinogenicity of chromium. Environ Health Perspect. 1981;40:121–30.CrossRef
26.
go back to reference Ray RR. Adverse hematological effects of hexavalent chromium: an overview. Interdiscip Toxicol. 2016;9(2):55–65.CrossRef Ray RR. Adverse hematological effects of hexavalent chromium: an overview. Interdiscip Toxicol. 2016;9(2):55–65.CrossRef
27.
go back to reference Bryson WG, Goodall CM. Differential toxicity and clearance kinetics of chromium (III) or (VI) in mice. Carcinogenesis. 1983;4(12):1535–9.CrossRef Bryson WG, Goodall CM. Differential toxicity and clearance kinetics of chromium (III) or (VI) in mice. Carcinogenesis. 1983;4(12):1535–9.CrossRef
28.
go back to reference Dowling HJ, Offenbacher EG, Pi-Sunyer FX. Absorption of inorganic, trivalent chromium from the vascularly perfused rat small intestine. J Nutr. 1989;119(8):1138–45.CrossRef Dowling HJ, Offenbacher EG, Pi-Sunyer FX. Absorption of inorganic, trivalent chromium from the vascularly perfused rat small intestine. J Nutr. 1989;119(8):1138–45.CrossRef
29.
go back to reference Lamson DW, Plaza SM. The safety and efficacy of high-dose chromium. Altern Med Rev. 2002;7(3):218–35.PubMed Lamson DW, Plaza SM. The safety and efficacy of high-dose chromium. Altern Med Rev. 2002;7(3):218–35.PubMed
30.
go back to reference Anderson RA, Bryden NA, Polansky MM. Lack of toxicity of chromium chloride and chromium picolinate in rats. J Am Coll Nutr. 1997;16(3):273–9.CrossRef Anderson RA, Bryden NA, Polansky MM. Lack of toxicity of chromium chloride and chromium picolinate in rats. J Am Coll Nutr. 1997;16(3):273–9.CrossRef
31.
go back to reference Anderson RA, Kozlovsky AS. Chromium intake, absorption and excretion of subjects consuming self-selected diets. Am J Clin Nutr. 1985;41(6):1177–83.CrossRef Anderson RA, Kozlovsky AS. Chromium intake, absorption and excretion of subjects consuming self-selected diets. Am J Clin Nutr. 1985;41(6):1177–83.CrossRef
32.
go back to reference Anderson RA, Polansky MM, Bryden NA. Stability and absorption of chromium and absorption of chromium histidinate complexes by humans. Biol Trace Elem Res. 2004;101(3):211–8.CrossRef Anderson RA, Polansky MM, Bryden NA. Stability and absorption of chromium and absorption of chromium histidinate complexes by humans. Biol Trace Elem Res. 2004;101(3):211–8.CrossRef
33.
go back to reference McIver DJ, Grizales AM, Brownstein JS, Goldfine AB. Risk of type 2 diabetes is lower in US adults taking chromium-containing supplements. J Nutr. 2015;145(12):2675–82.CrossRef McIver DJ, Grizales AM, Brownstein JS, Goldfine AB. Risk of type 2 diabetes is lower in US adults taking chromium-containing supplements. J Nutr. 2015;145(12):2675–82.CrossRef
34.
go back to reference Mertz W. Some aspects of nutritional trace element research. Fed Proc. 1970;29(4):1482–8.PubMed Mertz W. Some aspects of nutritional trace element research. Fed Proc. 1970;29(4):1482–8.PubMed
35.
go back to reference Versieck J, De Rudder J, Barbier F. Serum chromium levels. JAMA. 1979;242(15):1613.CrossRef Versieck J, De Rudder J, Barbier F. Serum chromium levels. JAMA. 1979;242(15):1613.CrossRef
36.
go back to reference Volpe SL, Huang HW, Larpadisorn K, Lesser II. Effect of chromium supplementation and exercise on body composition, resting metabolic rate and selected biochemical parameters in moderately obese women following an exercise program. J Am Coll Nutr. 2001;20(4):293–306.CrossRef Volpe SL, Huang HW, Larpadisorn K, Lesser II. Effect of chromium supplementation and exercise on body composition, resting metabolic rate and selected biochemical parameters in moderately obese women following an exercise program. J Am Coll Nutr. 2001;20(4):293–306.CrossRef
37.
go back to reference Akchurin OM, Kaskel F. Update on inflammation in chronic kidney disease. Blood Purif. 2015;39(1–3):84–92.CrossRef Akchurin OM, Kaskel F. Update on inflammation in chronic kidney disease. Blood Purif. 2015;39(1–3):84–92.CrossRef
38.
go back to reference Nowak KL, Chonchol M. Does inflammation affect outcomes in dialysis patients? Semin Dial. 2018;31(4):388–97.CrossRef Nowak KL, Chonchol M. Does inflammation affect outcomes in dialysis patients? Semin Dial. 2018;31(4):388–97.CrossRef
39.
go back to reference Kolahian S, Sadri H, Shahbazfar AA, Amani M, Mazadeh A, Mirani M. The effects of leucine, zinc, and chromium supplements on inflammatory events of the respiratory system in type 2 diabetic rats. PLoS One. 2015;10(7):e0133374.CrossRef Kolahian S, Sadri H, Shahbazfar AA, Amani M, Mazadeh A, Mirani M. The effects of leucine, zinc, and chromium supplements on inflammatory events of the respiratory system in type 2 diabetic rats. PLoS One. 2015;10(7):e0133374.CrossRef
40.
go back to reference Saiyed ZM, Lugo JP. Impact of chromium dinicocysteinate supplementation on inflammation, oxidative stress, and insulin resistance in type 2 diabetic subjects: an exploratory analysis of a randomized, double-blind, placebo-controlled study. Food Nutr Res. 2016;60:31762.CrossRef Saiyed ZM, Lugo JP. Impact of chromium dinicocysteinate supplementation on inflammation, oxidative stress, and insulin resistance in type 2 diabetic subjects: an exploratory analysis of a randomized, double-blind, placebo-controlled study. Food Nutr Res. 2016;60:31762.CrossRef
41.
go back to reference Jamilian M, Bahmani F, Siavashani MA, Mazloomi M, Asemi Z, Esmaillzadeh A. The effects of chromium supplementation on endocrine profiles, biomarkers of inflammation, and oxidative stress in women with polycystic ovary syndrome: a randomized, double-blind. Placebo-Controlled Trial Biol Trace Elem Res. 2016;172(1):72–8.CrossRef Jamilian M, Bahmani F, Siavashani MA, Mazloomi M, Asemi Z, Esmaillzadeh A. The effects of chromium supplementation on endocrine profiles, biomarkers of inflammation, and oxidative stress in women with polycystic ovary syndrome: a randomized, double-blind. Placebo-Controlled Trial Biol Trace Elem Res. 2016;172(1):72–8.CrossRef
42.
go back to reference Mihai S, Codrici E, Popescu ID, Enciu AM, Albulescu L, Necula LG, et al. Inflammation-related mechanisms in chronic kidney disease prediction, progression, and outcome. J Immunol Res. 2018;2018:2180373.CrossRef Mihai S, Codrici E, Popescu ID, Enciu AM, Albulescu L, Necula LG, et al. Inflammation-related mechanisms in chronic kidney disease prediction, progression, and outcome. J Immunol Res. 2018;2018:2180373.CrossRef
43.
go back to reference Ani M, Moshtaghie AA. The effect of chromium on parameters related to iron metabolism. Biol Trace Elem Res. 1992;32:57–64.CrossRef Ani M, Moshtaghie AA. The effect of chromium on parameters related to iron metabolism. Biol Trace Elem Res. 1992;32:57–64.CrossRef
44.
go back to reference Lukaski HC, Bolonchuk WW, Siders WA, Milne DB. Chromium supplementation and resistance training: effects on body composition, strength, and trace element status of men. Am J Clin Nutr. 1996;63(6):954–65.CrossRef Lukaski HC, Bolonchuk WW, Siders WA, Milne DB. Chromium supplementation and resistance training: effects on body composition, strength, and trace element status of men. Am J Clin Nutr. 1996;63(6):954–65.CrossRef
45.
go back to reference Angelova MG, Petkova-Marinova TV, Pogorielov MV, Loboda AN, Nedkova-Kolarova VN, Bozhinova AN. Trace element status (Iron, zinc, copper, chromium, cobalt, and nickel) in Iron-deficiency Anaemia of children under 3 years. Anemia. 2014;2014:718089.CrossRef Angelova MG, Petkova-Marinova TV, Pogorielov MV, Loboda AN, Nedkova-Kolarova VN, Bozhinova AN. Trace element status (Iron, zinc, copper, chromium, cobalt, and nickel) in Iron-deficiency Anaemia of children under 3 years. Anemia. 2014;2014:718089.CrossRef
46.
go back to reference Bjørklund G, Aaseth J, Skalny AV, Suliburska J, Skalnaya MG, Nikonorov AA, et al. Interactions of iron with manganese, zinc, chromium, and selenium as related to prophylaxis and treatment of iron deficiency. J Trace Elem Med Biol. 2017;41:41–53.CrossRef Bjørklund G, Aaseth J, Skalny AV, Suliburska J, Skalnaya MG, Nikonorov AA, et al. Interactions of iron with manganese, zinc, chromium, and selenium as related to prophylaxis and treatment of iron deficiency. J Trace Elem Med Biol. 2017;41:41–53.CrossRef
47.
48.
go back to reference D'Haese PC, Couttenye MM, Lamberts LV, Elseviers MM, Goodman WG, Schrooten I, et al. Aluminum, iron, lead, cadmium, copper, zinc, chromium, magnesium, strontium, and calcium content in bone of end-stage renal failure patients. Clin Chem. 1999;45(9):1548–56.PubMed D'Haese PC, Couttenye MM, Lamberts LV, Elseviers MM, Goodman WG, Schrooten I, et al. Aluminum, iron, lead, cadmium, copper, zinc, chromium, magnesium, strontium, and calcium content in bone of end-stage renal failure patients. Clin Chem. 1999;45(9):1548–56.PubMed
49.
go back to reference Baselt R. Chromium in Disposition of Toxic Drugs and Chemicals in Man. Chemical Toxicology Institute, Foster City, CA, Placed Published: 2008. Baselt R. Chromium in Disposition of Toxic Drugs and Chemicals in Man. Chemical Toxicology Institute, Foster City, CA, Placed Published: 2008.
Metadata
Title
Association of serum chromium levels with malnutrition in hemodialysis patients
Authors
Ching-Wei Hsu
Cheng-Hao Weng
Cheng-Chia Lee
Tzung-Hai Yen
Wen-Hung Huang
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Nephrology / Issue 1/2019
Electronic ISSN: 1471-2369
DOI
https://doi.org/10.1186/s12882-019-1476-x

Other articles of this Issue 1/2019

BMC Nephrology 1/2019 Go to the issue