Skip to main content
Top
Published in: BMC Nephrology 1/2019

Open Access 01-12-2019 | Kidney Transplantation | Research article

Increased ENaC activity during kidney preservation in Wisconsin solution

Authors: Sherif Khedr, Oleg Palygin, Tengis S. Pavlov, Gregory Blass, Vladislav Levchenko, Ammar Alsheikh, Michael W. Brands, Ashraf El-Meanawy, Alexander Staruschenko

Published in: BMC Nephrology | Issue 1/2019

Login to get access

Abstract

Background

The invention of an effective kidney preservation solution capable of prolonging harvested kidney viability is the core of kidney transplantation procedure. Researchers have been working on upgrading the preservation solution quality aiming at prolonging storage time while maintaining utmost organ viability and functionality. For many years, the University of Wisconsin (UW) solution has been considered the gold standard solution for kidney preservation. However, the lifespan of kidney preservation in the UW solution is still limited. Its impact on the epithelial Na+ channel (ENaC) activity and its mediated processes is unknown and the primary goal of this study.

Methods

Kidneys harvested from 8 weeks old Sprague Dawley rats were divided into 4 groups depending upon the period of preservation in UW solution. Additional analysis was performed using dogs’ kidneys. ENaC activity was measured using patch clamp technique; protein expression and mRNA transcription were tested through Western blot and RT-qPCR, respectively. A colorimetric LDH level estimation was performed at different time points during UW solution preservation.

Results

Kidney preservation in Wisconsin solution caused reduction of the kidney size and weight and elevation of LDH level. ENaC activity increased in both rat and dog kidneys preserved in the UW solution as assessed by patch clamp analysis. On the contrary, ENaC channel mRNA levels remained unchanged.

Conclusions

ENaC activity is significantly elevated in the kidneys during preservation in UW solution, which might affect the immediate post-implantation allograft function and trajectory post-transplant.
Literature
1.
go back to reference Collins AJ, Foley RN, Gilbertson DT, Chen SC. The state of chronic kidney disease, ESRD, and morbidity and mortality in the first year of dialysis. Clin J Am Soc Nephrol. 2009;4(Suppl 1):S5–11.CrossRef Collins AJ, Foley RN, Gilbertson DT, Chen SC. The state of chronic kidney disease, ESRD, and morbidity and mortality in the first year of dialysis. Clin J Am Soc Nephrol. 2009;4(Suppl 1):S5–11.CrossRef
2.
go back to reference Coresh J, Selvin E, Stevens LA, Manzi J, Kusek JW, Eggers P, et al. Prevalence of chronic kidney disease in the United States. JAMA. 2007;298(17):2038–47.CrossRef Coresh J, Selvin E, Stevens LA, Manzi J, Kusek JW, Eggers P, et al. Prevalence of chronic kidney disease in the United States. JAMA. 2007;298(17):2038–47.CrossRef
3.
go back to reference Liu J, Huang Z, Gilbertson DT, Foley RN, Collins AJ. An improved comorbidity index for outcome analyses among dialysis patients. Kidney Int. 2010;77(2):141–51.CrossRef Liu J, Huang Z, Gilbertson DT, Foley RN, Collins AJ. An improved comorbidity index for outcome analyses among dialysis patients. Kidney Int. 2010;77(2):141–51.CrossRef
4.
go back to reference Guibert EE, Petrenko AY, Balaban CL, Somov AY, Rodriguez JV, Fuller BJ. Organ preservation: current concepts and new strategies for the next decade. Transfus Med Hemother. 2011;38(2):125–42.CrossRef Guibert EE, Petrenko AY, Balaban CL, Somov AY, Rodriguez JV, Fuller BJ. Organ preservation: current concepts and new strategies for the next decade. Transfus Med Hemother. 2011;38(2):125–42.CrossRef
5.
go back to reference Lee CY, Mangino MJ. Preservation methods for kidney and liver. Organogenesis. 2009;5(3):105–12.CrossRef Lee CY, Mangino MJ. Preservation methods for kidney and liver. Organogenesis. 2009;5(3):105–12.CrossRef
6.
go back to reference Southard JH, Belzer FO. The University of Wisconsin organ preservation solution components, comparisons, and modifications. Transplant Rev. 1993;7(4):176–90.CrossRef Southard JH, Belzer FO. The University of Wisconsin organ preservation solution components, comparisons, and modifications. Transplant Rev. 1993;7(4):176–90.CrossRef
7.
go back to reference Southard JH, Pienaar H, McAnulty JF, D’Alessandro AM, Hoffmann RM, Pirsch JD, et al. The University of Wisconsin solution for organ preservation. Transplant Rev. 1989;3:103–30.CrossRef Southard JH, Pienaar H, McAnulty JF, D’Alessandro AM, Hoffmann RM, Pirsch JD, et al. The University of Wisconsin solution for organ preservation. Transplant Rev. 1989;3:103–30.CrossRef
8.
go back to reference Belzer FO, Southard JH. Principles of solid-organ preservation by cold storage. Transplantation. 1988;45(4):673–6.CrossRef Belzer FO, Southard JH. Principles of solid-organ preservation by cold storage. Transplantation. 1988;45(4):673–6.CrossRef
9.
go back to reference Southard JH, van Gulik TM, Ametani MS, Vreugdenhil PK, Lindell SL, Pienaar BL, et al. Important components of the UW solution. Transplantation. 1990;49(2):251–7.CrossRef Southard JH, van Gulik TM, Ametani MS, Vreugdenhil PK, Lindell SL, Pienaar BL, et al. Important components of the UW solution. Transplantation. 1990;49(2):251–7.CrossRef
10.
go back to reference Bhalla V, Hallows KR. Mechanisms of ENaC regulation and clinical implications. J Am Soc Nephrol. 2008;19(10):1845–54.CrossRef Bhalla V, Hallows KR. Mechanisms of ENaC regulation and clinical implications. J Am Soc Nephrol. 2008;19(10):1845–54.CrossRef
11.
go back to reference Staruschenko A. Regulation of transport in the connecting tubule and cortical collecting duct. Compr Physiol. 2012;2(2):1541–84.PubMedPubMedCentral Staruschenko A. Regulation of transport in the connecting tubule and cortical collecting duct. Compr Physiol. 2012;2(2):1541–84.PubMedPubMedCentral
12.
go back to reference Pavlov TS, Staruschenko A. Involvement of ENaC in the development of salt-sensitive hypertension. Am J Physiol-Renal. 2017;313(2):F135–F40.CrossRef Pavlov TS, Staruschenko A. Involvement of ENaC in the development of salt-sensitive hypertension. Am J Physiol-Renal. 2017;313(2):F135–F40.CrossRef
13.
go back to reference Manhiani MM, Duggan AD, Wilson H, Brands MW. Chronic intrarenal insulin replacement reverses diabetes mellitus-induced natriuresis and diuresis. Hypertension. 2012;59(2):421–30.CrossRef Manhiani MM, Duggan AD, Wilson H, Brands MW. Chronic intrarenal insulin replacement reverses diabetes mellitus-induced natriuresis and diuresis. Hypertension. 2012;59(2):421–30.CrossRef
14.
go back to reference Blass G, Klemens CA, Brands MW, Palygin O, Staruschenko A. Postprandial effects on ENaC-mediated sodium absorption. Sci Rep. 2019;9(1):4296.CrossRef Blass G, Klemens CA, Brands MW, Palygin O, Staruschenko A. Postprandial effects on ENaC-mediated sodium absorption. Sci Rep. 2019;9(1):4296.CrossRef
15.
go back to reference Pavlov TS, Levchenko V, Ilatovskaya DV, Moreno C, Staruschenko A. Renal sodium transport in renin-deficient dahl salt-sensitive rats. J Renin-Angiotensin-Aldosterone Syst. 2016;17(3). Pavlov TS, Levchenko V, Ilatovskaya DV, Moreno C, Staruschenko A. Renal sodium transport in renin-deficient dahl salt-sensitive rats. J Renin-Angiotensin-Aldosterone Syst. 2016;17(3).
16.
go back to reference Pavlov TS, Levchenko V, O'Connor PM, Ilatovskaya DV, Palygin O, Mori T, et al. Deficiency of renal cortical EGF increases ENaC activity and contributes to salt-sensitive hypertension. J Am Soc Nephrol. 2013;24(7):1053–62.CrossRef Pavlov TS, Levchenko V, O'Connor PM, Ilatovskaya DV, Palygin O, Mori T, et al. Deficiency of renal cortical EGF increases ENaC activity and contributes to salt-sensitive hypertension. J Am Soc Nephrol. 2013;24(7):1053–62.CrossRef
17.
go back to reference Ilatovskaya DV, Pavlov TS, Levchenko V, Negulyaev YA, Staruschenko A. Cortical actin binding protein cortactin mediates ENaC activity via Arp2/3 complex. FASEB J. 2011;25(8):2688–99.CrossRef Ilatovskaya DV, Pavlov TS, Levchenko V, Negulyaev YA, Staruschenko A. Cortical actin binding protein cortactin mediates ENaC activity via Arp2/3 complex. FASEB J. 2011;25(8):2688–99.CrossRef
18.
go back to reference Pochynyuk O, Rieg T, Bugaj V, Schroth J, Fridman A, Boss GR, et al. Dietary Na+ inhibits the open probability of the epithelial sodium channel in the kidney by enhancing apical P2Y2-receptor tone. FASEB J. 2010;24(6):2056–65.CrossRef Pochynyuk O, Rieg T, Bugaj V, Schroth J, Fridman A, Boss GR, et al. Dietary Na+ inhibits the open probability of the epithelial sodium channel in the kidney by enhancing apical P2Y2-receptor tone. FASEB J. 2010;24(6):2056–65.CrossRef
19.
go back to reference Flores J, DiBona DR, Beck CH, Leaf A. The role of cell swelling in ischemic renal damage and the protective effect of hypertonic solute. J Clin Invest. 1972;51(1):118–26.CrossRef Flores J, DiBona DR, Beck CH, Leaf A. The role of cell swelling in ischemic renal damage and the protective effect of hypertonic solute. J Clin Invest. 1972;51(1):118–26.CrossRef
20.
go back to reference Ar'Rajab A, Ahrén B, Sundberg R, Bengmark S. The function of a colloid in liver cold-storage preservation. Transplantation. 1991;52(1):34–8.CrossRef Ar'Rajab A, Ahrén B, Sundberg R, Bengmark S. The function of a colloid in liver cold-storage preservation. Transplantation. 1991;52(1):34–8.CrossRef
21.
go back to reference Li S, Liu B, Guan Q, Chafeeva I, Brooks DE, Nguan CY, et al. Cold preservation with hyperbranched polyglycerol-based solution improves kidney functional recovery with less injury at reperfusion in rats. Am J Transl Res. 2017;15(9):429–41. Li S, Liu B, Guan Q, Chafeeva I, Brooks DE, Nguan CY, et al. Cold preservation with hyperbranched polyglycerol-based solution improves kidney functional recovery with less injury at reperfusion in rats. Am J Transl Res. 2017;15(9):429–41.
22.
go back to reference Mees N, Southard JH, Belzer FO. Inhibition of ischemic induced cellular swelling in kidney cortex tissue by lactobionate anions. J Trauma. 1982;22(2):118–20.CrossRef Mees N, Southard JH, Belzer FO. Inhibition of ischemic induced cellular swelling in kidney cortex tissue by lactobionate anions. J Trauma. 1982;22(2):118–20.CrossRef
23.
go back to reference Schreinemachers MC, Doorschodt BM, Florquin S, Tolba RH. Comparison of preservation solutions for washout of kidney grafts: an experimental study. Transplant Proc. 2009;41(10):4072–9.CrossRef Schreinemachers MC, Doorschodt BM, Florquin S, Tolba RH. Comparison of preservation solutions for washout of kidney grafts: an experimental study. Transplant Proc. 2009;41(10):4072–9.CrossRef
24.
go back to reference Schreinemachers MC, Doorschodt BM, Florquin S, van den Bergh Weerman MA, Reitsma JB, Lai W, et al. Improved preservation and microcirculation with POLYSOL after transplantation in a porcine kidney autotransplantation model. Nephrol Dial Transplant. 2009;24(3):816–24.CrossRef Schreinemachers MC, Doorschodt BM, Florquin S, van den Bergh Weerman MA, Reitsma JB, Lai W, et al. Improved preservation and microcirculation with POLYSOL after transplantation in a porcine kidney autotransplantation model. Nephrol Dial Transplant. 2009;24(3):816–24.CrossRef
25.
go back to reference Bortner CD, Cidlowski JA. Absence of volume regulatory mechanisms contributes to the rapid activation of apoptosis in thymocytes. Am J Phys. 1996;271(3 Pt 1):C950–61.CrossRef Bortner CD, Cidlowski JA. Absence of volume regulatory mechanisms contributes to the rapid activation of apoptosis in thymocytes. Am J Phys. 1996;271(3 Pt 1):C950–61.CrossRef
26.
go back to reference Mongin AA, Orlov SN. Mechanisms of cell volume regulation and possible nature of the cell volume sensor. Pathophysiology. 2001;8(2):77–88.CrossRef Mongin AA, Orlov SN. Mechanisms of cell volume regulation and possible nature of the cell volume sensor. Pathophysiology. 2001;8(2):77–88.CrossRef
27.
go back to reference Okada Y, Maeno E, Shimizu T, Dezaki K, Wang J, Morishima S. Receptor-mediated control of regulatory volume decrease (RVD) and apoptotic volume decrease (AVD). J Physiol. 2001;532(Pt 1:3–16.CrossRef Okada Y, Maeno E, Shimizu T, Dezaki K, Wang J, Morishima S. Receptor-mediated control of regulatory volume decrease (RVD) and apoptotic volume decrease (AVD). J Physiol. 2001;532(Pt 1:3–16.CrossRef
28.
go back to reference Fronius M, Clauss WG. Mechano-sensitivity of ENaC: may the (shear) force be with you. Pflugers Arch. 2008;455(5):775–85.CrossRef Fronius M, Clauss WG. Mechano-sensitivity of ENaC: may the (shear) force be with you. Pflugers Arch. 2008;455(5):775–85.CrossRef
29.
go back to reference Karpushev AV, Ilatovskaya DV, Staruschenko A. The actin cytoskeleton and small G protein RhoA are not involved in flow-dependent activation of ENaC. BMC Res Notes. 2010;3:210.CrossRef Karpushev AV, Ilatovskaya DV, Staruschenko A. The actin cytoskeleton and small G protein RhoA are not involved in flow-dependent activation of ENaC. BMC Res Notes. 2010;3:210.CrossRef
30.
go back to reference Morimoto T, Liu W, Woda C, Carattino MD, Wei Y, Hughey RP, et al. Mechanism underlying flow stimulation of sodium absorption in the mammalian collecting duct. Am J Physiol Renal Physiol. 2006;291(3):F663–9.CrossRef Morimoto T, Liu W, Woda C, Carattino MD, Wei Y, Hughey RP, et al. Mechanism underlying flow stimulation of sodium absorption in the mammalian collecting duct. Am J Physiol Renal Physiol. 2006;291(3):F663–9.CrossRef
31.
go back to reference Awayda MS, Ismailov II, Berdiev BK, Benos DJ. A cloned renal epithelial Na+ channel protein displays stretch activation in planar lipid bilayers. Am J Phys. 1995;268(6 Pt 1):C1450–9.CrossRef Awayda MS, Ismailov II, Berdiev BK, Benos DJ. A cloned renal epithelial Na+ channel protein displays stretch activation in planar lipid bilayers. Am J Phys. 1995;268(6 Pt 1):C1450–9.CrossRef
32.
go back to reference Ji HL, Fuller CM, Benos DJ. Osmotic pressure regulates alpha beta gamma-rENaC expressed in Xenopus oocytes. Am J Phys. 1998;275(5 Pt 1):C1182–90.CrossRef Ji HL, Fuller CM, Benos DJ. Osmotic pressure regulates alpha beta gamma-rENaC expressed in Xenopus oocytes. Am J Phys. 1998;275(5 Pt 1):C1182–90.CrossRef
33.
go back to reference Sugita M, Ferraro P, Dagenais A, Clermont ME, Barbry P, Michel RP, et al. Alveolar liquid clearance and sodium channel expression are decreased in transplanted canine lungs. Am J Respir Crit Care Med. 2003;167(10):1440–50.CrossRef Sugita M, Ferraro P, Dagenais A, Clermont ME, Barbry P, Michel RP, et al. Alveolar liquid clearance and sodium channel expression are decreased in transplanted canine lungs. Am J Respir Crit Care Med. 2003;167(10):1440–50.CrossRef
34.
go back to reference Bohmer C, Wehner F. The epithelial Na(+) channel (ENaC) is related to the hypertonicity-induced Na(+) conductance in rat hepatocytes. FEBS Lett. 2001;494(1–2):125–8.CrossRef Bohmer C, Wehner F. The epithelial Na(+) channel (ENaC) is related to the hypertonicity-induced Na(+) conductance in rat hepatocytes. FEBS Lett. 2001;494(1–2):125–8.CrossRef
35.
go back to reference Lang F, Busch GL, Ritter M, Volkl H, Waldegger S, Gulbins E, et al. Functional significance of cell volume regulatory mechanisms. Physiol Rev. 1998;78(1):247–306.CrossRef Lang F, Busch GL, Ritter M, Volkl H, Waldegger S, Gulbins E, et al. Functional significance of cell volume regulatory mechanisms. Physiol Rev. 1998;78(1):247–306.CrossRef
36.
go back to reference Hinrichs GR, Michelsen JS, Zachar R, Friis UG, Svenningsen P, Birn H, et al. Albuminuria in kidney transplant recipients is associated with increased urinary serine proteases and activation of the epithelial sodium channel. Am J Physiol Renal Physiol. 2018;315(1):F151–F60.CrossRef Hinrichs GR, Michelsen JS, Zachar R, Friis UG, Svenningsen P, Birn H, et al. Albuminuria in kidney transplant recipients is associated with increased urinary serine proteases and activation of the epithelial sodium channel. Am J Physiol Renal Physiol. 2018;315(1):F151–F60.CrossRef
Metadata
Title
Increased ENaC activity during kidney preservation in Wisconsin solution
Authors
Sherif Khedr
Oleg Palygin
Tengis S. Pavlov
Gregory Blass
Vladislav Levchenko
Ammar Alsheikh
Michael W. Brands
Ashraf El-Meanawy
Alexander Staruschenko
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Nephrology / Issue 1/2019
Electronic ISSN: 1471-2369
DOI
https://doi.org/10.1186/s12882-019-1329-7

Other articles of this Issue 1/2019

BMC Nephrology 1/2019 Go to the issue