Skip to main content
Top
Published in: BMC Nephrology 1/2019

Open Access 01-12-2019 | Chronic Kidney Disease | Research article

Hyperuricemia and its related histopathological features on renal biopsy

Authors: Shulei Fan, Ping Zhang, Amanda Ying Wang, Xia Wang, Li Wang, Guisen Li, Daqing Hong

Published in: BMC Nephrology | Issue 1/2019

Login to get access

Abstract

Background

Hyperuricemia (HUA) is very common in chronic kidney disease (CKD). HUA is associated with an increased risk of cardiovascular events and accelerates the progression of CKD. Our study aimed to explore the relationship between baseline serum uric acid levels and renal histopathological features.

Methods

One thousand seventy patients receiving renal biopsy in our center were involved in our study. The baseline characteristics at the time of the kidney biopsy were collected from Renal Treatment System (RTS) database, including age, gender, serum uric acid (UA), glomerular filtration rate (eGFR), serum creatinine (Cr), urea, albumin (Alb), 24 h urine protein quantitation (24 h-u-pro) and blood pressure (BP). Pathological morphological changes were evaluated by two pathologists independently. Statistical analysis was done using SPSS 21.0.

Results

Among 1070 patients, 429 had IgA nephropathy (IgAN), 641 had non-IgAN. The incidence of HUA was 38.8% (n = 415), 43.8% (n = 188), and 43.2% (n = 277) in all patients, patients with IgAN and non-IgAN patients, respectively. Serum uric acid was correlated with eGFR (r = − 0.418, p < 0.001), Cr (r = 0.391, p < 0.001), urea (r = 0.410, p < 0.001), 24-u-pro (r = 0.077, p = 0.022), systolic blood pressure (SBP) (r = 0.175, p < 0.001) and diastolic blood pressure (DBP) (r = 0.109, p = 0.001). Multivariate logistic regression analysis showed that after adjustment for Cr, age and blood pressure, HUA was a risk factor for segmental glomerulosclerosis (OR = 1.800, 95% CI:1.309–2.477) and tubular atrophy/interstitial fibrosis (OR = 1.802, 95% CI:1.005–3.232). HUA increased the area under curve (AUC) in diagnosis of segmental glomerulosclerosis.

Conclusions

Hyperuricemia is prevalent in CKD. The serum uric acid level correlates not only with clinical renal injury indexes, but also with renal pathology. Hyperuricemia is an independent risk factor for segmental glomerulosclerosis and tubular atrophy/interstitial fibrosis.
Literature
1.
go back to reference Diamond HS, Paolino JS. Evidence for a postsecretory reabsorptive site for uric acid in man. J Clin Invest. 1973;52(6):1491–9.CrossRef Diamond HS, Paolino JS. Evidence for a postsecretory reabsorptive site for uric acid in man. J Clin Invest. 1973;52(6):1491–9.CrossRef
2.
go back to reference Aroor AR, Jia G, Habibi J, Sun Z, Ramirez-Perez FI, Brady B, Chen D, Martinez-Lemus LA, Manrique C, Nistala R, et al. Uric acid promotes vascular stiffness, maladaptive inflammatory responses and proteinuria in western diet fed mice. Metab Clin Exp. 2017;74:32–40.CrossRef Aroor AR, Jia G, Habibi J, Sun Z, Ramirez-Perez FI, Brady B, Chen D, Martinez-Lemus LA, Manrique C, Nistala R, et al. Uric acid promotes vascular stiffness, maladaptive inflammatory responses and proteinuria in western diet fed mice. Metab Clin Exp. 2017;74:32–40.CrossRef
3.
go back to reference Cai W, Duan XM, Liu Y, Yu J, Tang YL, Liu ZL, Jiang S, Zhang CP, Liu JY, Xu JX. Uric acid induces endothelial dysfunction by activating the HMGB1/RAGE signaling pathway. Biomed Res Int. 2017;2017:4391920.PubMedPubMedCentral Cai W, Duan XM, Liu Y, Yu J, Tang YL, Liu ZL, Jiang S, Zhang CP, Liu JY, Xu JX. Uric acid induces endothelial dysfunction by activating the HMGB1/RAGE signaling pathway. Biomed Res Int. 2017;2017:4391920.PubMedPubMedCentral
4.
go back to reference Corry DB, Eslami P, Yamamoto K, Nyby MD, Makino H, Tuck ML. Uric acid stimulates vascular smooth muscle cell proliferation and oxidative stress via the vascular renin-angiotensin system. J Hypertens. 2008;26(2):269–75.CrossRef Corry DB, Eslami P, Yamamoto K, Nyby MD, Makino H, Tuck ML. Uric acid stimulates vascular smooth muscle cell proliferation and oxidative stress via the vascular renin-angiotensin system. J Hypertens. 2008;26(2):269–75.CrossRef
5.
go back to reference Zoccali C, Maio R, Mallamaci F, Sesti G, Perticone F. Uric acid and endothelial dysfunction in essential hypertension. Journal of the American Society of Nephrology : JASN. 2006;17(5):1466–71.CrossRef Zoccali C, Maio R, Mallamaci F, Sesti G, Perticone F. Uric acid and endothelial dysfunction in essential hypertension. Journal of the American Society of Nephrology : JASN. 2006;17(5):1466–71.CrossRef
6.
go back to reference Ryu ES, Kim MJ, Shin HS, Jang YH, Choi HS, Jo I, Johnson RJ, Kang DH. Uric acid-induced phenotypic transition of renal tubular cells as a novel mechanism of chronic kidney disease. American journal of physiology Renal physiology. 2013;304(5):F471–80.CrossRef Ryu ES, Kim MJ, Shin HS, Jang YH, Choi HS, Jo I, Johnson RJ, Kang DH. Uric acid-induced phenotypic transition of renal tubular cells as a novel mechanism of chronic kidney disease. American journal of physiology Renal physiology. 2013;304(5):F471–80.CrossRef
7.
go back to reference Sanchez-Lozada LG, Tapia E, Santamaria J, Avila-Casado C, Soto V, Nepomuceno T, Rodriguez-Iturbe B, Johnson RJ, Herrera-Acosta J. Mild hyperuricemia induces vasoconstriction and maintains glomerular hypertension in normal and remnant kidney rats. Kidney Int. 2005;67(1):237–47.CrossRef Sanchez-Lozada LG, Tapia E, Santamaria J, Avila-Casado C, Soto V, Nepomuceno T, Rodriguez-Iturbe B, Johnson RJ, Herrera-Acosta J. Mild hyperuricemia induces vasoconstriction and maintains glomerular hypertension in normal and remnant kidney rats. Kidney Int. 2005;67(1):237–47.CrossRef
8.
go back to reference Iseki K, Ikemiya Y, Inoue T, Iseki C, Kinjo K, Takishita S. Significance of hyperuricemia as a risk factor for developing ESRD in a screened cohort. American journal of kidney diseases : the official journal of the National Kidney Foundation. 2004;44(4):642–50.CrossRef Iseki K, Ikemiya Y, Inoue T, Iseki C, Kinjo K, Takishita S. Significance of hyperuricemia as a risk factor for developing ESRD in a screened cohort. American journal of kidney diseases : the official journal of the National Kidney Foundation. 2004;44(4):642–50.CrossRef
9.
go back to reference Li L, Yang C, Zhao Y, Zeng X, Liu F, Fu P. Is hyperuricemia an independent risk factor for new-onset chronic kidney disease?: a systematic review and meta-analysis based on observational cohort studies. BMC Nephrol. 2014;15:122.CrossRef Li L, Yang C, Zhao Y, Zeng X, Liu F, Fu P. Is hyperuricemia an independent risk factor for new-onset chronic kidney disease?: a systematic review and meta-analysis based on observational cohort studies. BMC Nephrol. 2014;15:122.CrossRef
10.
go back to reference Mohandas R, Johnson RJ. Uric acid levels increase risk for new-onset kidney disease. Journal of the American Society of Nephrology : JASN. 2008;19(12):2251–3.CrossRef Mohandas R, Johnson RJ. Uric acid levels increase risk for new-onset kidney disease. Journal of the American Society of Nephrology : JASN. 2008;19(12):2251–3.CrossRef
11.
go back to reference Obermayr RP, Temml C, Gutjahr G, Knechtelsdorfer M, Oberbauer R, Klauser-Braun R. Elevated uric acid increases the risk for kidney disease. Journal of the American Society of Nephrology : JASN. 2008;19(12):2407–13.CrossRef Obermayr RP, Temml C, Gutjahr G, Knechtelsdorfer M, Oberbauer R, Klauser-Braun R. Elevated uric acid increases the risk for kidney disease. Journal of the American Society of Nephrology : JASN. 2008;19(12):2407–13.CrossRef
12.
go back to reference Jalal DI, Decker E, Perrenoud L, Nowak KL, Bispham N, Mehta T, Smits G, You Z, Seals D, Chonchol M, et al. Vascular function and uric acid-lowering in stage 3 CKD. Journal of the American Society of Nephrology : JASN. 2017;28(3):943–52.CrossRef Jalal DI, Decker E, Perrenoud L, Nowak KL, Bispham N, Mehta T, Smits G, You Z, Seals D, Chonchol M, et al. Vascular function and uric acid-lowering in stage 3 CKD. Journal of the American Society of Nephrology : JASN. 2017;28(3):943–52.CrossRef
13.
go back to reference Moe OW. Posing the question again: does chronic uric acid nephropathy exist? Journal of the American Society of Nephrology : JASN. 2010;21(3):395–7.CrossRef Moe OW. Posing the question again: does chronic uric acid nephropathy exist? Journal of the American Society of Nephrology : JASN. 2010;21(3):395–7.CrossRef
14.
go back to reference Bos MJ, Koudstaal PJ, Hofman A, Witteman JC, Breteler MM. Uric acid is a risk factor for myocardial infarction and stroke: the Rotterdam study. Stroke. 2006;37(6):1503–7.CrossRef Bos MJ, Koudstaal PJ, Hofman A, Witteman JC, Breteler MM. Uric acid is a risk factor for myocardial infarction and stroke: the Rotterdam study. Stroke. 2006;37(6):1503–7.CrossRef
15.
go back to reference Keenan T, Zhao W, Rasheed A, Ho WK, Malik R, Felix JF, Young R, Shah N, Samuel M, Sheikh N, et al. Causal assessment of serum urate levels in Cardiometabolic diseases through a Mendelian randomization study. J Am Coll Cardiol. 2016;67(4):407–16.CrossRef Keenan T, Zhao W, Rasheed A, Ho WK, Malik R, Felix JF, Young R, Shah N, Samuel M, Sheikh N, et al. Causal assessment of serum urate levels in Cardiometabolic diseases through a Mendelian randomization study. J Am Coll Cardiol. 2016;67(4):407–16.CrossRef
16.
go back to reference Perez-Ruiz F, Martinez-Indart L, Carmona L, Herrero-Beites AM, Pijoan JI, Krishnan E. Tophaceous gout and high level of hyperuricaemia are both associated with increased risk of mortality in patients with gout. Ann Rheum Dis. 2014;73(1):177–82.CrossRef Perez-Ruiz F, Martinez-Indart L, Carmona L, Herrero-Beites AM, Pijoan JI, Krishnan E. Tophaceous gout and high level of hyperuricaemia are both associated with increased risk of mortality in patients with gout. Ann Rheum Dis. 2014;73(1):177–82.CrossRef
17.
go back to reference Puddu P, Puddu GM, Cravero E, Vizioli L, Muscari A. Relationships among hyperuricemia, endothelial dysfunction and cardiovascular disease: molecular mechanisms and clinical implications. J Cardiol. 2012;59(3):235–42.CrossRef Puddu P, Puddu GM, Cravero E, Vizioli L, Muscari A. Relationships among hyperuricemia, endothelial dysfunction and cardiovascular disease: molecular mechanisms and clinical implications. J Cardiol. 2012;59(3):235–42.CrossRef
18.
go back to reference Mazzali M, Kanellis J, Han L, Feng L, Xia YY, Chen Q, Kang DH, Gordon KL, Watanabe S, Nakagawa T, et al. Hyperuricemia induces a primary renal arteriolopathy in rats by a blood pressure-independent mechanism. American journal of physiology Renal physiology. 2002;282(6):F991–7.CrossRef Mazzali M, Kanellis J, Han L, Feng L, Xia YY, Chen Q, Kang DH, Gordon KL, Watanabe S, Nakagawa T, et al. Hyperuricemia induces a primary renal arteriolopathy in rats by a blood pressure-independent mechanism. American journal of physiology Renal physiology. 2002;282(6):F991–7.CrossRef
19.
go back to reference Zhou J, Chen Y, Liu Y, Shi S, Li X, Wang S, Zhang H. Plasma uric acid level indicates tubular interstitial leisions at early stage of IgA nephropathy. BMC Nephrol. 2014;15:11.CrossRef Zhou J, Chen Y, Liu Y, Shi S, Li X, Wang S, Zhang H. Plasma uric acid level indicates tubular interstitial leisions at early stage of IgA nephropathy. BMC Nephrol. 2014;15:11.CrossRef
20.
go back to reference Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, Kusek JW, Eggers P, Van Lente F, Greene T, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604–12.CrossRef Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, Kusek JW, Eggers P, Van Lente F, Greene T, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604–12.CrossRef
21.
go back to reference Weisman MH, Gano AD Jr, Gabriel SE, Hochberg MC, Kavanaugh A, Ofman JJ, Prashker M, Suarez-Almazor ME, Yelin E, Nakelsky SD, et al. Reading and interpreting economic evaluations in rheumatoid arthritis: an assessment of selected instruments for critical appraisal. J Rheumatol. 2003;30(8):1739–47.PubMed Weisman MH, Gano AD Jr, Gabriel SE, Hochberg MC, Kavanaugh A, Ofman JJ, Prashker M, Suarez-Almazor ME, Yelin E, Nakelsky SD, et al. Reading and interpreting economic evaluations in rheumatoid arthritis: an assessment of selected instruments for critical appraisal. J Rheumatol. 2003;30(8):1739–47.PubMed
22.
go back to reference Working Group of the International Ig ANN, the renal pathology S, Cattran DC, Coppo R, Cook HT, Feehally J, Roberts IS, Troyanov S, Alpers CE, Amore A, et al. The Oxford classification of IgA nephropathy: rationale, clinicopathological correlations, and classification. Kidney Int. 2009;76(5):534–45.CrossRef Working Group of the International Ig ANN, the renal pathology S, Cattran DC, Coppo R, Cook HT, Feehally J, Roberts IS, Troyanov S, Alpers CE, Amore A, et al. The Oxford classification of IgA nephropathy: rationale, clinicopathological correlations, and classification. Kidney Int. 2009;76(5):534–45.CrossRef
23.
go back to reference Working Group of the International Ig ANN, The renal pathology S, Roberts IS, Cook HT, Troyanov S, Alpers CE, Amore A, Barratt J, Berthoux F, Bonsib S, et al. The Oxford classification of IgA nephropathy: pathology definitions, correlations, and reproducibility. Kidney Int. 2009;76(5):546–56.CrossRef Working Group of the International Ig ANN, The renal pathology S, Roberts IS, Cook HT, Troyanov S, Alpers CE, Amore A, Barratt J, Berthoux F, Bonsib S, et al. The Oxford classification of IgA nephropathy: pathology definitions, correlations, and reproducibility. Kidney Int. 2009;76(5):546–56.CrossRef
24.
go back to reference Jiang L, Liu G, Lv J, Huang C, Chen B, Wang S, Zou W, Zhang H, Wang H. Concise semiquantitative histological scoring system for immunoglobulin a nephropathy. Nephrology. 2009;14(6):597–605.CrossRef Jiang L, Liu G, Lv J, Huang C, Chen B, Wang S, Zou W, Zhang H, Wang H. Concise semiquantitative histological scoring system for immunoglobulin a nephropathy. Nephrology. 2009;14(6):597–605.CrossRef
25.
go back to reference Zhang L, Wang F, Wang L, Wang W, Liu B, Liu J, Chen M, He Q, Liao Y, Yu X, et al. Prevalence of chronic kidney disease in China: a cross-sectional survey. Lancet. 2012;379(9818):815–22.CrossRef Zhang L, Wang F, Wang L, Wang W, Liu B, Liu J, Chen M, He Q, Liao Y, Yu X, et al. Prevalence of chronic kidney disease in China: a cross-sectional survey. Lancet. 2012;379(9818):815–22.CrossRef
26.
go back to reference Liu R, Han C, Wu D, Xia X, Gu J, Guan H, Shan Z, Teng W. Prevalence of hyperuricemia and gout in mainland China from 2000 to 2014: a systematic review and meta-analysis. Biomed Res Int. 2015;2015:762820.PubMedPubMedCentral Liu R, Han C, Wu D, Xia X, Gu J, Guan H, Shan Z, Teng W. Prevalence of hyperuricemia and gout in mainland China from 2000 to 2014: a systematic review and meta-analysis. Biomed Res Int. 2015;2015:762820.PubMedPubMedCentral
27.
go back to reference Johnson RJ, Nakagawa T, Jalal D, Sanchez-Lozada LG, Kang DH, Ritz E. Uric acid and chronic kidney disease: which is chasing which? Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association. 2013;28(9):2221–8.CrossRef Johnson RJ, Nakagawa T, Jalal D, Sanchez-Lozada LG, Kang DH, Ritz E. Uric acid and chronic kidney disease: which is chasing which? Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association. 2013;28(9):2221–8.CrossRef
28.
go back to reference Chonchol M, Shlipak MG, Katz R, Sarnak MJ, Newman AB, Siscovick DS, Kestenbaum B, Carney JK, Fried LF. Relationship of uric acid with progression of kidney disease. American journal of kidney diseases : the official journal of the National Kidney Foundation. 2007;50(2):239–47.CrossRef Chonchol M, Shlipak MG, Katz R, Sarnak MJ, Newman AB, Siscovick DS, Kestenbaum B, Carney JK, Fried LF. Relationship of uric acid with progression of kidney disease. American journal of kidney diseases : the official journal of the National Kidney Foundation. 2007;50(2):239–47.CrossRef
29.
go back to reference Hira D, Chisaki Y, Noda S, Araki H, Uzu T, Maegawa H, Yano Y, Morita SY, Terada T. Population pharmacokinetics and therapeutic efficacy of Febuxostat in patients with severe renal impairment. Pharmacology. 2015;96(1–2):90–8.CrossRef Hira D, Chisaki Y, Noda S, Araki H, Uzu T, Maegawa H, Yano Y, Morita SY, Terada T. Population pharmacokinetics and therapeutic efficacy of Febuxostat in patients with severe renal impairment. Pharmacology. 2015;96(1–2):90–8.CrossRef
30.
go back to reference Levy G, Cheetham TC. Is it time to start treating asymptomatic hyperuricemia? American journal of kidney diseases : the official journal of the National Kidney Foundation. 2015;66(6):933–5.CrossRef Levy G, Cheetham TC. Is it time to start treating asymptomatic hyperuricemia? American journal of kidney diseases : the official journal of the National Kidney Foundation. 2015;66(6):933–5.CrossRef
31.
go back to reference McGowan B, Bennett K, Silke C, Whelan B. Adherence and persistence to urate-lowering therapies in the Irish setting. Clin Rheumatol. 2016;35(3):715–21.CrossRef McGowan B, Bennett K, Silke C, Whelan B. Adherence and persistence to urate-lowering therapies in the Irish setting. Clin Rheumatol. 2016;35(3):715–21.CrossRef
32.
go back to reference Sircar D, Chatterjee S, Waikhom R, Golay V, Raychaudhury A, Chatterjee S, Pandey R. Efficacy of Febuxostat for slowing the GFR decline in patients with CKD and asymptomatic hyperuricemia: a 6-month, double-blind, randomized, placebo-controlled trial. American journal of kidney diseases : the official journal of the National Kidney Foundation. 2015;66(6):945–50.CrossRef Sircar D, Chatterjee S, Waikhom R, Golay V, Raychaudhury A, Chatterjee S, Pandey R. Efficacy of Febuxostat for slowing the GFR decline in patients with CKD and asymptomatic hyperuricemia: a 6-month, double-blind, randomized, placebo-controlled trial. American journal of kidney diseases : the official journal of the National Kidney Foundation. 2015;66(6):945–50.CrossRef
33.
go back to reference Nakagawa T, Mazzali M, Kang DH, Kanellis J, Watanabe S, Sanchez-Lozada LG, Rodriguez-Iturbe B, Herrera-Acosta J, Johnson RJ. Hyperuricemia causes glomerular hypertrophy in the rat. Am J Nephrol. 2003;23(1):2–7.CrossRef Nakagawa T, Mazzali M, Kang DH, Kanellis J, Watanabe S, Sanchez-Lozada LG, Rodriguez-Iturbe B, Herrera-Acosta J, Johnson RJ. Hyperuricemia causes glomerular hypertrophy in the rat. Am J Nephrol. 2003;23(1):2–7.CrossRef
34.
go back to reference Dobrian AD, Schriver SD, Prewitt RL. Role of angiotensin II and free radicals in blood pressure regulation in a rat model of renal hypertension. Hypertension. 2001;38(3):361–6.CrossRef Dobrian AD, Schriver SD, Prewitt RL. Role of angiotensin II and free radicals in blood pressure regulation in a rat model of renal hypertension. Hypertension. 2001;38(3):361–6.CrossRef
Metadata
Title
Hyperuricemia and its related histopathological features on renal biopsy
Authors
Shulei Fan
Ping Zhang
Amanda Ying Wang
Xia Wang
Li Wang
Guisen Li
Daqing Hong
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Nephrology / Issue 1/2019
Electronic ISSN: 1471-2369
DOI
https://doi.org/10.1186/s12882-019-1275-4

Other articles of this Issue 1/2019

BMC Nephrology 1/2019 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.