Skip to main content
Top
Published in: BMC Nephrology 1/2018

Open Access 01-12-2018 | Research article

Metformin in autosomal dominant polycystic kidney disease: experimental hypothesis or clinical fact?

Authors: Antonio Pisani, Eleonora Riccio, Dario Bruzzese, Massimo Sabbatini

Published in: BMC Nephrology | Issue 1/2018

Login to get access

Abstract

Background

Autosomal dominant polycystic kidney disease (ADPKD) accounts for 8–10% of end-stage chronic kidney disease (CKD) patients worldwide. In the last decade, the advanced knowledge in genetics and molecular pathobiology of ADPKD focused some aberrant molecular pathways involved in the pathogenesis of the disease leading to controlled clinical trials aimed to delay its progression with the use of mTOR inhibitors, somatostatin or tolvaptan. Preclinical studies suggests an effective role of metformin in ADPKD treatment by activating AMPK sensor. Clinical trials are currently recruiting participants to test the metformin use in ADPKD patients.

Methods

We retrospectively examined the records of our ADPKD patients, selecting 7 diabetic ADPKD patients under metformin treatment and 7 matched non-diabetic ADPKD controls, to test the effect of metformin on renal progression during a 3 year follow-up.

Results

During the first year, the GFR decreased by 2.5% in Metformin Group and by 16% in Controls; thereafter, renal function remained stable in Metformin Group and further decreased in Controls, reaching a 50% difference after 3 years of observation. Accordingly, the overall crude loss of GFR, estimated by a linear mixed model, resulted slower in the Metformin than in Control Group (− 0.9; 95% C.I.: -2.7 to 0.9 vs - 5.0; 95% C.I.: -6.8 to − 3.2 mL/min/1.73 m2 per year, p = 0.002).

Conclusions

Our data are suggestive of a beneficial effect of metformin on progression of ADPKD. Large, randomized, prospective trials are needed to confirm this hypothesis.
Literature
1.
go back to reference Grantham JJ. Clinical practice. Autosomal dominant polycystic kidney disease. N Engl J Med. 2008;359:1477–85.CrossRef Grantham JJ. Clinical practice. Autosomal dominant polycystic kidney disease. N Engl J Med. 2008;359:1477–85.CrossRef
2.
go back to reference Grantham JJ. Mechanisms of progression in autosomal dominant polycystic kidney disease. Kidney Int Suppl. 1997;63:S93–7.PubMed Grantham JJ. Mechanisms of progression in autosomal dominant polycystic kidney disease. Kidney Int Suppl. 1997;63:S93–7.PubMed
3.
go back to reference Grantham JJ, Chapman AB, Torres VE. Volume progression in autosomal dominant polycystic kidney disease: the major factordetermining clinical outcomes. Clin J Am Soc Nephrol. 2006;1:148–57.CrossRef Grantham JJ, Chapman AB, Torres VE. Volume progression in autosomal dominant polycystic kidney disease: the major factordetermining clinical outcomes. Clin J Am Soc Nephrol. 2006;1:148–57.CrossRef
4.
go back to reference Serra AL, Poster D, Kistler AD, et al. Sirolimus and kidney growth in autosomal dominant polycystic kidney disease. N Engl J Med. 2010;363(9):820–9.CrossRef Serra AL, Poster D, Kistler AD, et al. Sirolimus and kidney growth in autosomal dominant polycystic kidney disease. N Engl J Med. 2010;363(9):820–9.CrossRef
5.
go back to reference Caroli A, Perico N, Perna A, et al. Effect of longacting somatostatin analogue on kidney and cyst growth in autosomal dominant polycystic kidney disease (ALADIN): a randomised, placebocontrolled, multicentre trial. Lancet. 2013;382:1485–95.CrossRef Caroli A, Perico N, Perna A, et al. Effect of longacting somatostatin analogue on kidney and cyst growth in autosomal dominant polycystic kidney disease (ALADIN): a randomised, placebocontrolled, multicentre trial. Lancet. 2013;382:1485–95.CrossRef
6.
go back to reference Torres VE, Chapman AB, Devuyst O, et al. Tolvaptan in patients with autosomal dominant polycystic kidney disease. N Engl J Med. 2012;367:2407–18.CrossRef Torres VE, Chapman AB, Devuyst O, et al. Tolvaptan in patients with autosomal dominant polycystic kidney disease. N Engl J Med. 2012;367:2407–18.CrossRef
7.
go back to reference Davidow CJ, Maser RL, Rome LA, Calvet JP, Grantham JJ. The cystic fibrosis transmembrane conductance regulator mediates transepithelial fluid secretion by human autosomal dominant polycystic kidney disease epithelium in vitro. Kidney Int. 1996;50:208–18.CrossRef Davidow CJ, Maser RL, Rome LA, Calvet JP, Grantham JJ. The cystic fibrosis transmembrane conductance regulator mediates transepithelial fluid secretion by human autosomal dominant polycystic kidney disease epithelium in vitro. Kidney Int. 1996;50:208–18.CrossRef
8.
go back to reference Li H, Findlay IA, Sheppard DN. The relationship between cell proliferation, cl secretion, and renal cyst growth: a study using CFTR inhibitors. Kidney Int. 2004;66:1926–38.CrossRef Li H, Findlay IA, Sheppard DN. The relationship between cell proliferation, cl secretion, and renal cyst growth: a study using CFTR inhibitors. Kidney Int. 2004;66:1926–38.CrossRef
9.
go back to reference Yang B, Sonawane ND, Zhao D, Somlo S, Verkman AS. Small-molecule CFTR inhibitors slow cyst growth in polycystic kidney disease. J Am Soc Nephrol. 2008;19:1300–10.CrossRef Yang B, Sonawane ND, Zhao D, Somlo S, Verkman AS. Small-molecule CFTR inhibitors slow cyst growth in polycystic kidney disease. J Am Soc Nephrol. 2008;19:1300–10.CrossRef
10.
go back to reference Hallows KR, Raghuram V, Kemp BE, Witters LA, Foskett JK. Inhibition of cystic fibrosis transmembrane conductance regulator by novel interaction with the metabolic sensor AMP activated protein kinase. J Clin Invest. 2000;105:1711–21.CrossRef Hallows KR, Raghuram V, Kemp BE, Witters LA, Foskett JK. Inhibition of cystic fibrosis transmembrane conductance regulator by novel interaction with the metabolic sensor AMP activated protein kinase. J Clin Invest. 2000;105:1711–21.CrossRef
11.
go back to reference Zhou G, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest. 2001;108:1167–74.CrossRef Zhou G, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest. 2001;108:1167–74.CrossRef
12.
go back to reference Shillingford JM, et al. The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cystogenesis in polycystic kidney disease. Proc Natl Acad Sci USA. 2006;103:5466–71.CrossRef Shillingford JM, et al. The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cystogenesis in polycystic kidney disease. Proc Natl Acad Sci USA. 2006;103:5466–71.CrossRef
13.
go back to reference Shaw C, Simms RJ, Pitcher D, et al. Epidemiology of patients in England and Wales with autosomal dominant polycystic kidney disease and end-stage renal failure. Nephrol Dial Transplant. 2014 Oct;29(10):1910–8.CrossRef Shaw C, Simms RJ, Pitcher D, et al. Epidemiology of patients in England and Wales with autosomal dominant polycystic kidney disease and end-stage renal failure. Nephrol Dial Transplant. 2014 Oct;29(10):1910–8.CrossRef
14.
go back to reference Gansevoort RT, Arici M, Benzing T et al. Recommendations for the use of tolvaptan in autosomal dominant polycystic kidney disease: a position statement on behalf of the ERA-EDTA Working Groups on Inherited Kidney Disorders and European Renal Best Practice. Nephrol Dial Transplant. 2016;31(3):337–48. https://doi.org/10.1093/ndt/gfv456.CrossRef Gansevoort RT, Arici M, Benzing T et al. Recommendations for the use of tolvaptan in autosomal dominant polycystic kidney disease: a position statement on behalf of the ERA-EDTA Working Groups on Inherited Kidney Disorders and European Renal Best Practice. Nephrol Dial Transplant. 2016;31(3):337–48. https://​doi.​org/​10.​1093/​ndt/​gfv456.CrossRef
15.
go back to reference Bhutani H, Smith V, Rahbari-Oskoui F, et al. A comparison of ultrasound and magnetic resonance imaging shows that kidney length predicts chronic kidney disease in autosomal dominant polycystic kidney disease. Kidney Int. 2015;88(1):146–51.CrossRef Bhutani H, Smith V, Rahbari-Oskoui F, et al. A comparison of ultrasound and magnetic resonance imaging shows that kidney length predicts chronic kidney disease in autosomal dominant polycystic kidney disease. Kidney Int. 2015;88(1):146–51.CrossRef
16.
go back to reference Reagan-Shaw S, Nihal M, Ahmad N. Dose translation from animal to human studies revisited. FASEB J. 2008;22:659–61.CrossRef Reagan-Shaw S, Nihal M, Ahmad N. Dose translation from animal to human studies revisited. FASEB J. 2008;22:659–61.CrossRef
17.
go back to reference Ravine D, Walker RG, Gibson RN, Forrest SM, Richards RI, Friend K, Sheffield LJ, Kincaid-Smith P, Danks DM. Phenotype and genotype heterogeneity in autosomal dominant polycystic kidney disease. Lancet. 1992;340:1330–3.CrossRef Ravine D, Walker RG, Gibson RN, Forrest SM, Richards RI, Friend K, Sheffield LJ, Kincaid-Smith P, Danks DM. Phenotype and genotype heterogeneity in autosomal dominant polycystic kidney disease. Lancet. 1992;340:1330–3.CrossRef
18.
go back to reference Praga M, Morales E. Obesity, proteinuria and progression of renal failure. Curr Opin Nephrol Hypertens. 2006;15:481–6.CrossRef Praga M, Morales E. Obesity, proteinuria and progression of renal failure. Curr Opin Nephrol Hypertens. 2006;15:481–6.CrossRef
19.
go back to reference Ruggenenti P, Gaspari F, Cannata A, et al. Measuring and estimating GFR and treatment effect in ADPKD patients: results and implications of a longitudinal cohort study. PLoS One. 2012;7(2):32533.CrossRef Ruggenenti P, Gaspari F, Cannata A, et al. Measuring and estimating GFR and treatment effect in ADPKD patients: results and implications of a longitudinal cohort study. PLoS One. 2012;7(2):32533.CrossRef
20.
go back to reference Salpeter S, Greyber E, Pasternak G et al. Risk of fatal and nonfatal lactic acidosis with metformin use in type 2 diabetes mellitus. Cochrane Database Syst Rev. 2006;(1):CD002967. Salpeter S, Greyber E, Pasternak G et al. Risk of fatal and nonfatal lactic acidosis with metformin use in type 2 diabetes mellitus. Cochrane Database Syst Rev. 2006;(1):CD002967.
21.
go back to reference Hostalek U, Gwilt M, Hidelmann S. Therapeutic use of metformin in prediabetes and diabetes prevention. Drugs. 2005;75(10):1071–94.CrossRef Hostalek U, Gwilt M, Hidelmann S. Therapeutic use of metformin in prediabetes and diabetes prevention. Drugs. 2005;75(10):1071–94.CrossRef
22.
go back to reference Mauras N, DelGiorno C, Hossain J, Bird K, Killen K, Marinbraum D, Weltman A, Damaso L, Balagopa P. Metformin use in children with obesity and normal glucose tolerance -- effects on cardiovascular markers and intrahepatic fat. J Pediatr Endocrinol Metab. 2012;25(1-2):33–40. Mauras N, DelGiorno C, Hossain J, Bird K, Killen K, Marinbraum D, Weltman A, Damaso L, Balagopa P. Metformin use in children with obesity and normal glucose tolerance -- effects on cardiovascular markers and intrahepatic fat. J Pediatr Endocrinol Metab. 2012;25(1-2):33–40.
23.
go back to reference Jang K, Chung H, Yoon J, Moon S, Yoon SH Yu KS, Kim K, Chung JY. Pharmacokinetics, safety, and tolerability of metformin in healthy elderly subjects. J Clin Pharmacol. 2016;56(9):1104–10.CrossRef Jang K, Chung H, Yoon J, Moon S, Yoon SH Yu KS, Kim K, Chung JY. Pharmacokinetics, safety, and tolerability of metformin in healthy elderly subjects. J Clin Pharmacol. 2016;56(9):1104–10.CrossRef
Metadata
Title
Metformin in autosomal dominant polycystic kidney disease: experimental hypothesis or clinical fact?
Authors
Antonio Pisani
Eleonora Riccio
Dario Bruzzese
Massimo Sabbatini
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Nephrology / Issue 1/2018
Electronic ISSN: 1471-2369
DOI
https://doi.org/10.1186/s12882-018-1090-3

Other articles of this Issue 1/2018

BMC Nephrology 1/2018 Go to the issue