Skip to main content
Top
Published in: BMC Nephrology 1/2018

Open Access 01-12-2018 | Case report

A case of hypokalemia and proteinuria with a new mutation in the SLC12A3 Gene

Authors: Qin Chen, Yaqin Wu, Jingya Zhao, Ying Jia, Wei Wang

Published in: BMC Nephrology | Issue 1/2018

Login to get access

Abstract

Background

Gitelman syndrome is an autosomal recessive inherited renal disorder characterized by hypokalemia, hypomagnesemia, and hypocalciuria. Since the symptoms are not severe and laboratory results are not always clear, Gitelman syndrome can go unnoticed by physicians. Here, we report our experiences with a patient that presented with hypokalemia and proteinuria; genetic analysis revealed a new homozygous mutation in the SLC12A3 gene.

Case presentation

A 47-year-old man presented with hypokalemia and proteinuria. He had come to the hospital with the same symptoms 11 months and 3 years prior. His laboratory tests showed hypokalemia, hypocalciuria, and increased plasma angiotensin-2 activity. His renal pathology was consistent with the development of minimal lesions. Genetic analysis found a new homozygous mutation in exon 6 on the SLC12A3 gene (p.Trp281Arg) in the patient and in his brother; his mother and sister were diagnosed as heterozygous carriers of the same gene mutation. Finally, the patient was diagnosed with Gitelman syndrome.

Conclusions

This case is the first to report a homozygous mutation in the 841th nucleotide of exon 6 on the SLC12A3 gene (p.Trp281Arg), which may cause Gitelman syndrome. At the same time, this report might stimulate interest in discussing the relationship between different mutations in the SLC12A3 gene and renal pathology.
Literature
1.
go back to reference Knoers NV, Levtchenk EN. Gitelman syndrome. Orphanet J Rare Dis. 2008;3(22):1–6. Knoers NV, Levtchenk EN. Gitelman syndrome. Orphanet J Rare Dis. 2008;3(22):1–6.
2.
go back to reference Lemmink HH, Knoers NV, Karolyi L, et al. Novel mutations in the thiazide-sensitive NaCl cotransporter gene in patients with Gitelman syndrome with predominant localization to the C-terminal domain. Kidney Int. 1998;54(3):720–30.CrossRef Lemmink HH, Knoers NV, Karolyi L, et al. Novel mutations in the thiazide-sensitive NaCl cotransporter gene in patients with Gitelman syndrome with predominant localization to the C-terminal domain. Kidney Int. 1998;54(3):720–30.CrossRef
3.
go back to reference Takeuchi Y, Mishima E, Shima H, et al. Exonic mutations in the SLC12A3 gene cause exon skipping and premature termination in Gitelman syndrome. J Am Soc Nephrol. 2015;26(2):271–9.CrossRef Takeuchi Y, Mishima E, Shima H, et al. Exonic mutations in the SLC12A3 gene cause exon skipping and premature termination in Gitelman syndrome. J Am Soc Nephrol. 2015;26(2):271–9.CrossRef
4.
go back to reference Fremont OT, Chan JC. Understanding Bartter syndrome and Gitelman syndrome. World J Pediatr. 2012;8(1):25–30.CrossRef Fremont OT, Chan JC. Understanding Bartter syndrome and Gitelman syndrome. World J Pediatr. 2012;8(1):25–30.CrossRef
5.
go back to reference Lin SH, Cheng NL, Hsu YJ, et al. Intrafamilial phenotype variability in patients with Gitelman syndrome having the same mutations in their thiazide-sensitive sodium/chloride cotransporter. Am J Kidney Dis. 2004;43(2):304–12.CrossRef Lin SH, Cheng NL, Hsu YJ, et al. Intrafamilial phenotype variability in patients with Gitelman syndrome having the same mutations in their thiazide-sensitive sodium/chloride cotransporter. Am J Kidney Dis. 2004;43(2):304–12.CrossRef
6.
go back to reference K Nozu T, Inagaki XJF, et al. Molecular analysis of digenic inheritance in Bartter syndrome with sensorineural deafness. J Med Genet. 2008;45:182–6.CrossRef K Nozu T, Inagaki XJF, et al. Molecular analysis of digenic inheritance in Bartter syndrome with sensorineural deafness. J Med Genet. 2008;45:182–6.CrossRef
7.
go back to reference Matsumura Y, Uchida S, Kondo Y, et al. Overt nephrogenic diabetes insipidus in mice lacking the CLC-K1 chloride channel. Nat Genet. 1999;21:95–8.CrossRef Matsumura Y, Uchida S, Kondo Y, et al. Overt nephrogenic diabetes insipidus in mice lacking the CLC-K1 chloride channel. Nat Genet. 1999;21:95–8.CrossRef
8.
go back to reference Liu T, Wang C, Lu J, et al. Genotype/phenotype analysis in 67 Chinese patients with Gitelman’s syndrome. Am J Nephrol. 2016;44:159–68.CrossRef Liu T, Wang C, Lu J, et al. Genotype/phenotype analysis in 67 Chinese patients with Gitelman’s syndrome. Am J Nephrol. 2016;44:159–68.CrossRef
9.
go back to reference Riveira-Munoz E, Chang Q, Bindels RJ, et al. Gitelman's syndrome: towards genotype-phenotype correlations? Pediatr Nephrol. 2007;22(3):326–32.CrossRef Riveira-Munoz E, Chang Q, Bindels RJ, et al. Gitelman's syndrome: towards genotype-phenotype correlations? Pediatr Nephrol. 2007;22(3):326–32.CrossRef
10.
go back to reference Berry MR, Robinson C, Karet Frankl FE. Unexpected clinical sequelae of Gitelman syndrome: hypertension in adulthood is common and females have higher potassium requirements. Nephrol Dial Transplant. 2013;28(6):1533–42.CrossRef Berry MR, Robinson C, Karet Frankl FE. Unexpected clinical sequelae of Gitelman syndrome: hypertension in adulthood is common and females have higher potassium requirements. Nephrol Dial Transplant. 2013;28(6):1533–42.CrossRef
11.
go back to reference Tseng MH, Yang SS, Hsu YJ, et al. Genotype, phenotype, and follow-up in Taiwanese patients with salt-losing tubulopathy associated with SLC12A3 mutation. J Clin Endocrinol Metab. 2012;97(8):E1478–82.CrossRef Tseng MH, Yang SS, Hsu YJ, et al. Genotype, phenotype, and follow-up in Taiwanese patients with salt-losing tubulopathy associated with SLC12A3 mutation. J Clin Endocrinol Metab. 2012;97(8):E1478–82.CrossRef
12.
go back to reference Bonfante L, Davis PA, Spinello M, et al. Chronic renal failure, end-stage renal disease, and peritoneal dialysis in Gitelman's syndrome. Am J Kidney Dis. 2001;38(1):165–8.CrossRef Bonfante L, Davis PA, Spinello M, et al. Chronic renal failure, end-stage renal disease, and peritoneal dialysis in Gitelman's syndrome. Am J Kidney Dis. 2001;38(1):165–8.CrossRef
13.
go back to reference Calo LA, Marchini F, Davis PA, et al. Kidney transplant in Gitelman's syndrome. Report of the first case. J Nephrol. 2003;16(1):144–7.PubMed Calo LA, Marchini F, Davis PA, et al. Kidney transplant in Gitelman's syndrome. Report of the first case. J Nephrol. 2003;16(1):144–7.PubMed
14.
go back to reference Ceri M, Unverdi S, Altay M, et al. Focal segmental glomerulosclerosis in association with Gitelman syndrome. Int Urol Nephrol. 2011;43(3):905–7.CrossRef Ceri M, Unverdi S, Altay M, et al. Focal segmental glomerulosclerosis in association with Gitelman syndrome. Int Urol Nephrol. 2011;43(3):905–7.CrossRef
15.
go back to reference Hanevold C, Mian A, Dalton R. C1q nephropathy in association with Gitelman syndrome: a case report. Pediatr Nephrol. 2006;21(12):1904–8.CrossRef Hanevold C, Mian A, Dalton R. C1q nephropathy in association with Gitelman syndrome: a case report. Pediatr Nephrol. 2006;21(12):1904–8.CrossRef
16.
go back to reference Demoulin N, Aydin S, Cosyns JP, et al. Gitelman syndrome and glomerular proteinuria: a link between loss of sodium-chloride cotransporter and podocyte dysfunction? Nephrol Dial Transplant. 2014;29(Suppl 4):iv117–20.CrossRef Demoulin N, Aydin S, Cosyns JP, et al. Gitelman syndrome and glomerular proteinuria: a link between loss of sodium-chloride cotransporter and podocyte dysfunction? Nephrol Dial Transplant. 2014;29(Suppl 4):iv117–20.CrossRef
17.
go back to reference Schultheis PJ, Lorenz JN, Meneton P, et al. Phenotype resembling Gitelman's syndrome in mice lacking the apical Na+-Cl- cotransporter of the distal convoluted tubule. J Biol Chem. 1998;273(44):29150–5.CrossRef Schultheis PJ, Lorenz JN, Meneton P, et al. Phenotype resembling Gitelman's syndrome in mice lacking the apical Na+-Cl- cotransporter of the distal convoluted tubule. J Biol Chem. 1998;273(44):29150–5.CrossRef
18.
go back to reference Marples D, Frokiaer J, Dorup J, et al. Hypokalemia-induced downregulation of aquaporin-2 water channel expression in rat kidney medulla and cortex. J Clin Invest. 1996;97(8):1960–8.CrossRef Marples D, Frokiaer J, Dorup J, et al. Hypokalemia-induced downregulation of aquaporin-2 water channel expression in rat kidney medulla and cortex. J Clin Invest. 1996;97(8):1960–8.CrossRef
19.
go back to reference Tizianello A, Garibotto G, Robaudo C, et al. Renal ammoniagenesis in humans with chronic potassium depletion. Kidney Int. 1991;40(4):772–8.CrossRef Tizianello A, Garibotto G, Robaudo C, et al. Renal ammoniagenesis in humans with chronic potassium depletion. Kidney Int. 1991;40(4):772–8.CrossRef
20.
go back to reference Reungjui S, Hu H, Mu W, et al. Thiazide-induced subtle renal injury not observed in states of equivalent hypokalemia. Kidney Int. 2007;72(12):1483–92.CrossRef Reungjui S, Hu H, Mu W, et al. Thiazide-induced subtle renal injury not observed in states of equivalent hypokalemia. Kidney Int. 2007;72(12):1483–92.CrossRef
21.
go back to reference Ruster C, Wolf G. Renin-angiotensin-aldosterone system and progression of renal disease. J Am Soc Nephrol. 2006;17(11):2985–91.CrossRef Ruster C, Wolf G. Renin-angiotensin-aldosterone system and progression of renal disease. J Am Soc Nephrol. 2006;17(11):2985–91.CrossRef
22.
go back to reference Takahashi N, Kimura H, Mizuno S, et al. Severe intraglomerular detachment of podocytes in a Gitelman syndrome patient. Clin Exp Nephrol. 2012;16(3):495–500.CrossRef Takahashi N, Kimura H, Mizuno S, et al. Severe intraglomerular detachment of podocytes in a Gitelman syndrome patient. Clin Exp Nephrol. 2012;16(3):495–500.CrossRef
Metadata
Title
A case of hypokalemia and proteinuria with a new mutation in the SLC12A3 Gene
Authors
Qin Chen
Yaqin Wu
Jingya Zhao
Ying Jia
Wei Wang
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Nephrology / Issue 1/2018
Electronic ISSN: 1471-2369
DOI
https://doi.org/10.1186/s12882-018-1083-2

Other articles of this Issue 1/2018

BMC Nephrology 1/2018 Go to the issue