Skip to main content
Top
Published in: BMC Nephrology 1/2018

Open Access 01-12-2018 | Research article

Pediatric continuous renal replacement therapy: have practice changes changed outcomes? A large single-center ten-year retrospective evaluation

Authors: Alyssa A. Riley, Mary Watson, Carolyn Smith, Danielle Guffey, Charles G. Minard, Helen Currier, Ayse Akcan Arikan

Published in: BMC Nephrology | Issue 1/2018

Login to get access

Abstract

Background

To evaluate changes in population characteristics and outcomes in a large single-center pediatric patient cohort treated with continuous renal replacement therapy (CRRT) over a 10 year course, coincident with multiple institutional practice changes in CRRT delivery.

Methods

A retrospective cohort study with comparative analysis of all patients treated from 2004 to 2013 with CRRT in the neonatal, pediatric, and cardiovascular intensive care units within a free-standing pediatric tertiary care hospital.

Results

Three hundred eleven total patients were identified, 38 of whom received concurrent treatment with extracorporeal membrane oxygenation. 273 patients received CRRT only and were compared in two study eras (2004–2008 n = 129; 2009–2013 n = 144). Across eras, mean patient age decreased (9.2 vs 7.7 years, p = 0.08), and the most common principal diagnosis changed from cardiac to liver disease. There was an increase in patients treated with continuous renal replacement therapy between cohorts for acute kidney injury of multi factorial etiology (44% vs 56%) and a decrease in treated patients with sepsis (21% vs 11%, p = 0.04). There was no significant difference in survival to hospital discharge between eras (47% vs 49%). Improvement in outpatient follow-up after discharge amongst survivors was seen between study eras (33% vs 54%).

Conclusions

Despite multiple institutional practice changes in provision of CRRT, few changes were seen regarding patient demographics, diseases treated, indications for therapy, and survival over 10 years at a single tertiary care. Recognition of need for follow-up nephrology care following CRRT is improving. Ongoing assessment of the patient population in a changing landscape of care for critically ill pediatric patients remains important.
Literature
1.
go back to reference Askenazi DJ, Goldstein SL, Koralkar R, et al. Continuous renal replacement therapy for children ≤10 kg: a report from the prospective pediatric continuous renal replacement therapy registry. J Pediatr. 2013;162(3):587–92.CrossRef Askenazi DJ, Goldstein SL, Koralkar R, et al. Continuous renal replacement therapy for children ≤10 kg: a report from the prospective pediatric continuous renal replacement therapy registry. J Pediatr. 2013;162(3):587–92.CrossRef
2.
go back to reference Fleming GM, Walters S, Goldstein SL. Nonrenal indications for continuous renal replacement therapy: A report from the Prospective Pediatric Continuous Renal Replacement Therapy Registry Group. Pediatr Crit Care Med. 2012;13(5):e299–304.CrossRef Fleming GM, Walters S, Goldstein SL. Nonrenal indications for continuous renal replacement therapy: A report from the Prospective Pediatric Continuous Renal Replacement Therapy Registry Group. Pediatr Crit Care Med. 2012;13(5):e299–304.CrossRef
3.
go back to reference Sutherland SM, Zappitelli M, Alexander SR, et al. Fluid overload and mortality in children receiving continuous renal replacement therapy: the prospective pediatric continuous renal replacement therapy registry. Am J Kidney Dis. 2010;55(2):316–25.CrossRef Sutherland SM, Zappitelli M, Alexander SR, et al. Fluid overload and mortality in children receiving continuous renal replacement therapy: the prospective pediatric continuous renal replacement therapy registry. Am J Kidney Dis. 2010;55(2):316–25.CrossRef
4.
go back to reference Zappitell M, Goldstein SL, Symons JM, et al. Protein and calorie prescription for children and young adults receiving continuous renal replacement therapy: a report from the Prospective Pediatric Continuous Renal Replacement Therapy Registry Group. Crit Care Med. 2008;36(12):3239–45.CrossRef Zappitell M, Goldstein SL, Symons JM, et al. Protein and calorie prescription for children and young adults receiving continuous renal replacement therapy: a report from the Prospective Pediatric Continuous Renal Replacement Therapy Registry Group. Crit Care Med. 2008;36(12):3239–45.CrossRef
5.
go back to reference Flores FX, Brophy PD, Symons JM, et al. Continuous renal replacement therapy (CRRT) after stem cell transplantation. A report from the prospective pediatric CRRT Registry Group. Pediatr Nephrol. 2008;23(4):625–30.CrossRef Flores FX, Brophy PD, Symons JM, et al. Continuous renal replacement therapy (CRRT) after stem cell transplantation. A report from the prospective pediatric CRRT Registry Group. Pediatr Nephrol. 2008;23(4):625–30.CrossRef
6.
go back to reference Symons JM, Chua AN, Somers MJ, et al. Demographic characteristics of pediatric continuous renal replacement therapy: a report of the prospective pediatric continuous renal replacement therapy registry. Clin J Am Soc Nephrol. 2007;2(4):732–8.CrossRef Symons JM, Chua AN, Somers MJ, et al. Demographic characteristics of pediatric continuous renal replacement therapy: a report of the prospective pediatric continuous renal replacement therapy registry. Clin J Am Soc Nephrol. 2007;2(4):732–8.CrossRef
7.
go back to reference Goldstein SL, Somers MJ, Brophy PD, et al. The Prospective Pediatric Continuous Renal Replacement Therapy (ppCRRT) Registry: design, development and data assessed. Int J Artif Organs. 2004;27(1):9–14.CrossRef Goldstein SL, Somers MJ, Brophy PD, et al. The Prospective Pediatric Continuous Renal Replacement Therapy (ppCRRT) Registry: design, development and data assessed. Int J Artif Organs. 2004;27(1):9–14.CrossRef
8.
go back to reference Brophy PD, Somers MJ, Baum MA, et al. Multi-centre evaluation of anticoagulation in patients receiving continuous renal replacement therapy (CRRT). Nephrol Dial Transplant. 2005;20(7):1416–21.CrossRef Brophy PD, Somers MJ, Baum MA, et al. Multi-centre evaluation of anticoagulation in patients receiving continuous renal replacement therapy (CRRT). Nephrol Dial Transplant. 2005;20(7):1416–21.CrossRef
9.
go back to reference Goldstein SL, Somers MJ, Baum MA, et al. Pediatric patients with multi-organ dysfunction syndrome receiving continuous renal replacement therapy. Kindey Int. 2005;67(2):653–8.CrossRef Goldstein SL, Somers MJ, Baum MA, et al. Pediatric patients with multi-organ dysfunction syndrome receiving continuous renal replacement therapy. Kindey Int. 2005;67(2):653–8.CrossRef
10.
go back to reference Goldstein SL, Hackbarth R, Bunchman TE, et al. Evaluation of the PRISMA M10 circuit in critically ill infants with acute kidney injury: A report from the Prospective Pediatric CRRT Registry Group. Int J Artif Organs. 2006;29(12):1105–8.CrossRef Goldstein SL, Hackbarth R, Bunchman TE, et al. Evaluation of the PRISMA M10 circuit in critically ill infants with acute kidney injury: A report from the Prospective Pediatric CRRT Registry Group. Int J Artif Organs. 2006;29(12):1105–8.CrossRef
11.
go back to reference Hackbarth R, Bunchman TE, Chua AN. al e. The effect of vascular access location and size on circuit survival in pediatric continuous renal replacement therapy: a report from the PPCRRT registry. Int J Artif Organs. 2007;30(12):1116–21.CrossRef Hackbarth R, Bunchman TE, Chua AN. al e. The effect of vascular access location and size on circuit survival in pediatric continuous renal replacement therapy: a report from the PPCRRT registry. Int J Artif Organs. 2007;30(12):1116–21.CrossRef
12.
go back to reference Fiser D, Tilford J, Roberson P. Relationship of illness severity and length of stay to functional outcomes in the pediatric intensive care unit: a multi-institutional study. Crit Care Med. 2000;28(4):1173–9.CrossRef Fiser D, Tilford J, Roberson P. Relationship of illness severity and length of stay to functional outcomes in the pediatric intensive care unit: a multi-institutional study. Crit Care Med. 2000;28(4):1173–9.CrossRef
13.
go back to reference Pollack M, Holubkov R, Funai T, Clark A, et al. Pediatric intensive care outcomes: development of new morbidities during pediatric critical care. Pediatr Crit Care Med. 2014;15(9):821–7.CrossRef Pollack M, Holubkov R, Funai T, Clark A, et al. Pediatric intensive care outcomes: development of new morbidities during pediatric critical care. Pediatr Crit Care Med. 2014;15(9):821–7.CrossRef
14.
go back to reference Modem V, Thompson M, Gollhofer D, et al. Timing of continuous renal replacement therapy and mortality in critcally ill children. Crit Care Med. 2014;42(4):943–53.CrossRef Modem V, Thompson M, Gollhofer D, et al. Timing of continuous renal replacement therapy and mortality in critcally ill children. Crit Care Med. 2014;42(4):943–53.CrossRef
15.
go back to reference Hui-Stickle S, Brewer ED, Goldstein SL. Pediatric ARF epidemiology at a tertiary care center from 1999 to 2001. Am J Kidney Dis. 2005;45(1):96–101.CrossRef Hui-Stickle S, Brewer ED, Goldstein SL. Pediatric ARF epidemiology at a tertiary care center from 1999 to 2001. Am J Kidney Dis. 2005;45(1):96–101.CrossRef
16.
go back to reference Bailey D, Phan V, Litalien C, et al. Risk factors of acute renal failure in critically ill children: a prospective decriptive epidemiological study. Pediatr Crit Care Med. 2007;8(1):29–35.CrossRef Bailey D, Phan V, Litalien C, et al. Risk factors of acute renal failure in critically ill children: a prospective decriptive epidemiological study. Pediatr Crit Care Med. 2007;8(1):29–35.CrossRef
17.
go back to reference McGregor TL, Jones DP, Wang L, et al. Acute kidney injury incidence in noncritically ill hospitalized children, adolescents, and young adults: a retrospective observational study. Am J Kidney Dis. 2016;67(3):384–90.CrossRef McGregor TL, Jones DP, Wang L, et al. Acute kidney injury incidence in noncritically ill hospitalized children, adolescents, and young adults: a retrospective observational study. Am J Kidney Dis. 2016;67(3):384–90.CrossRef
18.
go back to reference Schneider K, Khemani R, Grushkin C, Bart R. Serum creatinine as stratified in the RIFLE score for acute kidney injury is associated with mortality and length of stay for children in the pediatric intensive care unit. Crit Care Med. 2010;38(3):933–9.CrossRef Schneider K, Khemani R, Grushkin C, Bart R. Serum creatinine as stratified in the RIFLE score for acute kidney injury is associated with mortality and length of stay for children in the pediatric intensive care unit. Crit Care Med. 2010;38(3):933–9.CrossRef
19.
go back to reference Sutherland SM, Ji J, Sheikhi FH, et al. AKI in hospitalized children: epidemiology and clinical associations in a national cohort. Clin J Am Soc Nephrol. 2013;8(10):1661–9.CrossRef Sutherland SM, Ji J, Sheikhi FH, et al. AKI in hospitalized children: epidemiology and clinical associations in a national cohort. Clin J Am Soc Nephrol. 2013;8(10):1661–9.CrossRef
20.
go back to reference Goldstein SL, Currier H, Graf C, et al. Outcome in children receiving continuous venovenous hemofiltration. Pediatics. 2001;107(6):1309–12. Goldstein SL, Currier H, Graf C, et al. Outcome in children receiving continuous venovenous hemofiltration. Pediatics. 2001;107(6):1309–12.
21.
go back to reference Hayes LW, Oster RA, Tofil NM, et al. Outcomes of critically ill children requiring continuous renal replacement therapy. J Crit Care. 2009;24(3):394–400.CrossRef Hayes LW, Oster RA, Tofil NM, et al. Outcomes of critically ill children requiring continuous renal replacement therapy. J Crit Care. 2009;24(3):394–400.CrossRef
22.
go back to reference Boschee E, Cave D, Garros D, et al. Indications and outcomes in children receiving renal replacement therapy in pediatric intensive care. J Crit Care. 2014;29(1):37–42.CrossRef Boschee E, Cave D, Garros D, et al. Indications and outcomes in children receiving renal replacement therapy in pediatric intensive care. J Crit Care. 2014;29(1):37–42.CrossRef
23.
go back to reference Santiago M, Lopez-Herce J, Urbano J, et al. Clinical course and mortality risk factors in critically ill children requiring continuous renal replacement therapy. Intensive Care Med. 2010;36(5):843–9.CrossRef Santiago M, Lopez-Herce J, Urbano J, et al. Clinical course and mortality risk factors in critically ill children requiring continuous renal replacement therapy. Intensive Care Med. 2010;36(5):843–9.CrossRef
24.
go back to reference Lopez-Herce J, Santiago M, Solana M, et al. Clinical course of children requiring prolonged continuous renal replacement therapy. Pediatr Nephrol. 2010;25:523–8.CrossRef Lopez-Herce J, Santiago M, Solana M, et al. Clinical course of children requiring prolonged continuous renal replacement therapy. Pediatr Nephrol. 2010;25:523–8.CrossRef
25.
go back to reference Sutherland SM, Goldstein SL, Alexander SL. The Prospective Pediatric Continuous Renal Replacement Therapy (ppCRRT) Registry: a critical appraisal. Pediatr Nephrol. 2014;29(11):2069–76.CrossRef Sutherland SM, Goldstein SL, Alexander SL. The Prospective Pediatric Continuous Renal Replacement Therapy (ppCRRT) Registry: a critical appraisal. Pediatr Nephrol. 2014;29(11):2069–76.CrossRef
26.
go back to reference Liu ID, Ng KH, Lau PY, et al. Use of HF20 membrane in critically ill unstable low-body-weight infants on inotropic support. Pediatr Nephrol. 2013;28(5):819–22.CrossRef Liu ID, Ng KH, Lau PY, et al. Use of HF20 membrane in critically ill unstable low-body-weight infants on inotropic support. Pediatr Nephrol. 2013;28(5):819–22.CrossRef
27.
go back to reference Ronco C, Garzotto F, Brendolan A, et al. Continuous renal replacement therapy in neonates and small infants: development and first-in-human use of a miniaturised machine (CARPEDIEM). Lancet. 2014;383(9931):1807–13.CrossRef Ronco C, Garzotto F, Brendolan A, et al. Continuous renal replacement therapy in neonates and small infants: development and first-in-human use of a miniaturised machine (CARPEDIEM). Lancet. 2014;383(9931):1807–13.CrossRef
28.
go back to reference Peruzzi L, Bonaudo R, Amore A, et al. Neonatal sepsis with multi-organ failure and treated with a new dialysis device specifically designed for newborns. Case Rep Nephrol Urol. 2014;4(2):113–9.CrossRef Peruzzi L, Bonaudo R, Amore A, et al. Neonatal sepsis with multi-organ failure and treated with a new dialysis device specifically designed for newborns. Case Rep Nephrol Urol. 2014;4(2):113–9.CrossRef
29.
go back to reference Askenazi D, Ingram D, White S, et al. Smaller circuits for smaller patients: improving renal support therapy with AquadexTM. Pediatr Nephrol. 2016;31(5):853–60.CrossRef Askenazi D, Ingram D, White S, et al. Smaller circuits for smaller patients: improving renal support therapy with AquadexTM. Pediatr Nephrol. 2016;31(5):853–60.CrossRef
30.
go back to reference Coulthard MG, Crosier J, Griffiths C, et al. Haemodialysing babies weighing < 8 kg with the Newcastle infant dialysis and ultrafiltration system (Nidus): comparison with peritoneal and conventional haemodialysis. Pediatr Nephrol. 2014;29(10):1873–81.CrossRef Coulthard MG, Crosier J, Griffiths C, et al. Haemodialysing babies weighing < 8 kg with the Newcastle infant dialysis and ultrafiltration system (Nidus): comparison with peritoneal and conventional haemodialysis. Pediatr Nephrol. 2014;29(10):1873–81.CrossRef
31.
go back to reference Santhanakrishnan A, Nestle TT, Moore BL, et al. Development of an accurate fluid management system for a pediatric continuous renal replacement therapy device. ASAIO J. 2013;59(3):294–301.CrossRef Santhanakrishnan A, Nestle TT, Moore BL, et al. Development of an accurate fluid management system for a pediatric continuous renal replacement therapy device. ASAIO J. 2013;59(3):294–301.CrossRef
32.
go back to reference Hanudel MR, Salusky IB, Zaritsky JJ. The accuracy of a continuous volumetric balancing system in pediatric continuous renal replacement therapy. Int J Artif Organs. 2014;37(3):215–21.CrossRef Hanudel MR, Salusky IB, Zaritsky JJ. The accuracy of a continuous volumetric balancing system in pediatric continuous renal replacement therapy. Int J Artif Organs. 2014;37(3):215–21.CrossRef
33.
go back to reference Deep A, Stewart C, Dhawan A, Douiri A. Effect of continuous renal replacement therapy on outcome in pediatric acute liver failure. Crit Care Med. 2016;44(10):1910–9.CrossRef Deep A, Stewart C, Dhawan A, Douiri A. Effect of continuous renal replacement therapy on outcome in pediatric acute liver failure. Crit Care Med. 2016;44(10):1910–9.CrossRef
34.
go back to reference Rana A, Kueht M, Desai M, et al. No child left behind: Liver transplantion in critically ill children. J Am Coll Surg. 2017;224(4):671–7.CrossRef Rana A, Kueht M, Desai M, et al. No child left behind: Liver transplantion in critically ill children. J Am Coll Surg. 2017;224(4):671–7.CrossRef
35.
go back to reference Cruz AT, Perry AM, Williams EA, et al. Implementation of goal-directed therapy for children with suspected sepsis in the emergency department. Pediatrics. 2011;127(3):e758–66.CrossRef Cruz AT, Perry AM, Williams EA, et al. Implementation of goal-directed therapy for children with suspected sepsis in the emergency department. Pediatrics. 2011;127(3):e758–66.CrossRef
36.
go back to reference Akcan Arikan A, Williams EA, Graf JM, et al. Resuscitation Bundle in Pediatric Shock Decreases Acute Kidney Injury and Improves Outcomes. J Pediatr. 2015;167(6):1301–5.CrossRef Akcan Arikan A, Williams EA, Graf JM, et al. Resuscitation Bundle in Pediatric Shock Decreases Acute Kidney Injury and Improves Outcomes. J Pediatr. 2015;167(6):1301–5.CrossRef
37.
go back to reference Foland JA, Fortenberry JD, Warshaw BL. Fluid overload before continuous hemofiltration and survival in critically ill children: A retrospective analysis. Crit Care Med. 2004;32(8):1771–6.CrossRef Foland JA, Fortenberry JD, Warshaw BL. Fluid overload before continuous hemofiltration and survival in critically ill children: A retrospective analysis. Crit Care Med. 2004;32(8):1771–6.CrossRef
38.
go back to reference Gillespie RS, Seidel K, Symons JM. Effect of fluid overload and dose of replacement fluid on survival in hemofiltration. Pediatr Nephrol. 2004;19(12):1394–9.CrossRef Gillespie RS, Seidel K, Symons JM. Effect of fluid overload and dose of replacement fluid on survival in hemofiltration. Pediatr Nephrol. 2004;19(12):1394–9.CrossRef
39.
go back to reference de Galasso L, Emma F, Picca S, et al. Continuous renal replacement therapy in children: fluid overload does not always predict mortality. Pediatr Nephrol. 2016;31(4):651–9.CrossRef de Galasso L, Emma F, Picca S, et al. Continuous renal replacement therapy in children: fluid overload does not always predict mortality. Pediatr Nephrol. 2016;31(4):651–9.CrossRef
40.
go back to reference Elbahlawan L, West NK, Avent Y, et al. Impact of continuous renal replacement therapy on oxygenation in children with acute lung injury after allogeneic hematopoietic stem cell transplantation. Pediatr Blood Cancer. 2010;55(3):540–5.CrossRef Elbahlawan L, West NK, Avent Y, et al. Impact of continuous renal replacement therapy on oxygenation in children with acute lung injury after allogeneic hematopoietic stem cell transplantation. Pediatr Blood Cancer. 2010;55(3):540–5.CrossRef
41.
go back to reference Rajesekaran S, Jones DP, Avent Y, et al. Outcomes of hematopoietic stem cell transplant patients who received continuous renal replacement therapy in a pediatric oncology intensive care unit. Pediatr Crit Care Med. 2010;11(6):699–706.CrossRef Rajesekaran S, Jones DP, Avent Y, et al. Outcomes of hematopoietic stem cell transplant patients who received continuous renal replacement therapy in a pediatric oncology intensive care unit. Pediatr Crit Care Med. 2010;11(6):699–706.CrossRef
42.
go back to reference Santiago M, Lopez-Herce J, Vierge E, et al. Infection in critically ill pediatric patients on continuous renal replacement therapy. Int J Artif Organs. 2017;40(5):224–9.CrossRef Santiago M, Lopez-Herce J, Vierge E, et al. Infection in critically ill pediatric patients on continuous renal replacement therapy. Int J Artif Organs. 2017;40(5):224–9.CrossRef
43.
go back to reference Baird JS, Wald EL. Long-duration (> 4 weeks) continuous renal replacement therapy in critical illness. Int J Artif Organs. 2010;33(10):716–20.CrossRef Baird JS, Wald EL. Long-duration (> 4 weeks) continuous renal replacement therapy in critical illness. Int J Artif Organs. 2010;33(10):716–20.CrossRef
44.
go back to reference Wierstra B, Kadri S, Alomar S, et al. The impact of “early” versus “late” initiation of renal replacement therapy in critical care patients with acute kidney injury: a systematic review and evidence synthesis. Crit Care. 2016;20:122.CrossRef Wierstra B, Kadri S, Alomar S, et al. The impact of “early” versus “late” initiation of renal replacement therapy in critical care patients with acute kidney injury: a systematic review and evidence synthesis. Crit Care. 2016;20:122.CrossRef
45.
go back to reference Zarbock A, Kellum J, Schmidt C, et al. Effect of early vs delayed initiation of renal replacement therapy on mortality in critically ill patients with acute kidney injury: The ELAIN randomized clinica trial. JAMA. 2016;315(20):2190–9.CrossRef Zarbock A, Kellum J, Schmidt C, et al. Effect of early vs delayed initiation of renal replacement therapy on mortality in critically ill patients with acute kidney injury: The ELAIN randomized clinica trial. JAMA. 2016;315(20):2190–9.CrossRef
46.
go back to reference Gaudry S, Hajage D, Schortgen F, et al. Initiation strategies for renal-replacement therapy in the intensive care unit. N Engl J Med. 2016;375(2):122–33.CrossRef Gaudry S, Hajage D, Schortgen F, et al. Initiation strategies for renal-replacement therapy in the intensive care unit. N Engl J Med. 2016;375(2):122–33.CrossRef
47.
go back to reference Askenazi DJ, Feig DI, Graham NM, et al. 3–5 year longitudinal follow-up of pediatric patients after acute renal failure. Kidney Int. 2006;69(1):184–9.CrossRef Askenazi DJ, Feig DI, Graham NM, et al. 3–5 year longitudinal follow-up of pediatric patients after acute renal failure. Kidney Int. 2006;69(1):184–9.CrossRef
48.
go back to reference Ali T, Tachibana A, Khan I, et al. The changing pattern of referral in acute kidney injury. QJM. 2011;104(6):497–503.CrossRef Ali T, Tachibana A, Khan I, et al. The changing pattern of referral in acute kidney injury. QJM. 2011;104(6):497–503.CrossRef
49.
go back to reference Mammen C, Al Abbas A, Skippen P, et al. Long-term risk of CKD in children surviving episodes of acute kidney injury in the intensive care unit: a prospective cohort study. Am J Kidney Dis. 2012;59(4):523–30.CrossRef Mammen C, Al Abbas A, Skippen P, et al. Long-term risk of CKD in children surviving episodes of acute kidney injury in the intensive care unit: a prospective cohort study. Am J Kidney Dis. 2012;59(4):523–30.CrossRef
50.
go back to reference Wong CS, Pierce CB, Cole SR, et al. Association of proteinuria with race, cause of chronic kidney disease, and glomerular filtration rate in the chronic kidney disease in children study. Clin J Am Soc Nephrol. 2009;4(4):812–9.CrossRef Wong CS, Pierce CB, Cole SR, et al. Association of proteinuria with race, cause of chronic kidney disease, and glomerular filtration rate in the chronic kidney disease in children study. Clin J Am Soc Nephrol. 2009;4(4):812–9.CrossRef
51.
go back to reference ESCAPE Trial Group, Wuhl E, Trivelli A, et al. Strict blood-pressure control and progression of renal failure in children. N Engl J Med. 2009;361(17):1639–50.CrossRef ESCAPE Trial Group, Wuhl E, Trivelli A, et al. Strict blood-pressure control and progression of renal failure in children. N Engl J Med. 2009;361(17):1639–50.CrossRef
52.
go back to reference Kaddourah A, Basu RK, Bagshaw SM, Goldstein SL. AWARE Investigators. Epidemiology of Acute Kidney Injury in Critically Ill Children and Young Adults. N Engl J Med. 2017;376(1):11–20.CrossRef Kaddourah A, Basu RK, Bagshaw SM, Goldstein SL. AWARE Investigators. Epidemiology of Acute Kidney Injury in Critically Ill Children and Young Adults. N Engl J Med. 2017;376(1):11–20.CrossRef
53.
go back to reference Sutherland SM, Byrnes JJ, Kothari M, et al. AKI in hospitalized children: comparing the pRIFLE, AKIN, and KDIGO definitions. Clin J Am Soc Nephrol. 2015;10(4):554–61.CrossRef Sutherland SM, Byrnes JJ, Kothari M, et al. AKI in hospitalized children: comparing the pRIFLE, AKIN, and KDIGO definitions. Clin J Am Soc Nephrol. 2015;10(4):554–61.CrossRef
54.
go back to reference Sanchez-Pinto LN, Goldstein SL, Schneider JB, Khemani RG. Association Between Progression and Improvement of Acute Kidney Injury and Mortality in Critically Ill Children. Pediatr Crit Care Med. 2015;16(8):703–10.CrossRef Sanchez-Pinto LN, Goldstein SL, Schneider JB, Khemani RG. Association Between Progression and Improvement of Acute Kidney Injury and Mortality in Critically Ill Children. Pediatr Crit Care Med. 2015;16(8):703–10.CrossRef
55.
go back to reference Fitzgerald JC, Basu RK, Akcan-Arikan A, et al. Acute Kidney Injury in Pediatric Severe Sepsis: An Independent Risk Factor for Death and New Disability. Crit Care Med. 2016;44(12):2241–50.CrossRef Fitzgerald JC, Basu RK, Akcan-Arikan A, et al. Acute Kidney Injury in Pediatric Severe Sepsis: An Independent Risk Factor for Death and New Disability. Crit Care Med. 2016;44(12):2241–50.CrossRef
Metadata
Title
Pediatric continuous renal replacement therapy: have practice changes changed outcomes? A large single-center ten-year retrospective evaluation
Authors
Alyssa A. Riley
Mary Watson
Carolyn Smith
Danielle Guffey
Charles G. Minard
Helen Currier
Ayse Akcan Arikan
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Nephrology / Issue 1/2018
Electronic ISSN: 1471-2369
DOI
https://doi.org/10.1186/s12882-018-1068-1

Other articles of this Issue 1/2018

BMC Nephrology 1/2018 Go to the issue