Skip to main content
Top
Published in: BMC Nephrology 1/2018

Open Access 01-12-2018 | Research article

Lipoprotein(a) accelerated the progression of atherosclerosis in patients with end-stage renal disease

Authors: Kun Ling Ma, Tie Kai Gong, Ze Bo Hu, Yang Zhang, Gui Hua Wang, Liang Liu, Pei Pei Chen, Jian Lu, Chen Chen Lu, Bi Cheng Liu

Published in: BMC Nephrology | Issue 1/2018

Login to get access

Abstract

Background

Increased plasma level of lipoprotein(a) (Lpa) is a risk factor of cardiovascular diseases. This study aimed to explore the role of Lpa in the progression of atherosclerosis in patients with end-stage renal disease (ESRD) and to investigate whether its potential mechanism is mediated by CXC chemokine ligand 16 (CXCL16) and low-density lipoprotein receptor (LDLr).

Methods

This is a retrospective clinical study. From January 2015 to April 2016, forty-six ESRD patients from Danyang First People’s Hospital were investigated. The patients were grouped according to their plasma Lpa levels: control group (Lpa < 300 mg/l, n = 23) and high Lpa group (Lpa ≥ 300 mg/l, n = 23). ESRD Patients with acute infective diseases, cancer, and/or chronic active hepatitis were excluded. Biochemical indexes and lipid profiles of the patients were measured. Surgically removed tissues from the radial arteries of ESRD patients receiving arteriovenostomy were used for the preliminary evaluation of atherosclerosis. Haematoxylin-eosin (HE) and filipin staining were used to observe foam cell formation. Protein expression levels of Lpa, CXCL16, and LDLr were detected by immunohistochemistry staining and immunofluorescent staining.

Results

There was more foam cell formation and cholesterol accumulation in the radial arteries of the high Lpa group than in those of the control group. Furthermore, the expression levels of Lpa, CXCL16, and LDLr were significantly increased in the radial arteries of the high Lpa group. Correlation analyses showed that the protein expression levels of Lpa (r = 0.72, P < 0.01), LDLr (r = 0.54, P < 0.01), and CXCL16 (r = 0.6, P < 0.01) in the radial arteries of ESRD patients were positively correlated with the plasma Lpa levels. Further analyses showed that the co-expression of Lpa with LDLr or CXCL16 was increased in the high Lpa group.

Conclusions

High plasma Lpa levels accelerated the progression of atherosclerosis in ESRD through inducing Lpa accumulation in the arteries, which was associated with LDLr and CXCL16. These two lipoproteins could both be major lipoprotein components that regulate the entry of Lpa into arterial cells.
Literature
1.
go back to reference Locatelli F, Pisoni RL, Combe C, Bommer J, Andreucci VE, Piera L, et al. Anaemia in haemodialysis patients of five European countries: association with morbidity and mortality in the Dialysis outcomes and practice patterns study (DOPPS). Nephrol Dial Transplant. 2004;19(1):121–32.CrossRef Locatelli F, Pisoni RL, Combe C, Bommer J, Andreucci VE, Piera L, et al. Anaemia in haemodialysis patients of five European countries: association with morbidity and mortality in the Dialysis outcomes and practice patterns study (DOPPS). Nephrol Dial Transplant. 2004;19(1):121–32.CrossRef
2.
go back to reference Drueke TB, Massy ZA. Atherosclerosis in CKD: differences from the general population. Nat Rev Nephrol. 2010;6(12):723–35.CrossRef Drueke TB, Massy ZA. Atherosclerosis in CKD: differences from the general population. Nat Rev Nephrol. 2010;6(12):723–35.CrossRef
3.
go back to reference Clarke R, Peden JF, Hopewell JC, Kyriakou T, Goel A, Heath SC, et al. Genetic variants associated with Lp(a) lipoprotein level and coronary disease. N Engl J Med. 2009;361(26):2518–28.CrossRef Clarke R, Peden JF, Hopewell JC, Kyriakou T, Goel A, Heath SC, et al. Genetic variants associated with Lp(a) lipoprotein level and coronary disease. N Engl J Med. 2009;361(26):2518–28.CrossRef
4.
go back to reference Virani SS, Brautbar A, Davis BC, Nambi V, Hoogeveen RC, Sharrett AR, et al. Associations between lipoprotein(a) levels and cardiovascular outcomes in black and white subjects: the atherosclerosis risk in communities (ARIC) study. Circulation. 2012;125(2):241–9.CrossRef Virani SS, Brautbar A, Davis BC, Nambi V, Hoogeveen RC, Sharrett AR, et al. Associations between lipoprotein(a) levels and cardiovascular outcomes in black and white subjects: the atherosclerosis risk in communities (ARIC) study. Circulation. 2012;125(2):241–9.CrossRef
5.
go back to reference Momiyama Y, Ohmori R, Fayad ZA, Tanaka N, Kato R, Taniguchi H, et al. Associations between serum lipoprotein(a) levels and the severity of coronary and aortic atherosclerosis. Atherosclerosis. 2012;222(1):241–4.CrossRef Momiyama Y, Ohmori R, Fayad ZA, Tanaka N, Kato R, Taniguchi H, et al. Associations between serum lipoprotein(a) levels and the severity of coronary and aortic atherosclerosis. Atherosclerosis. 2012;222(1):241–4.CrossRef
6.
go back to reference Utermann G, Weber W. Protein composition of Lp(a) lipoprotein from human plasma. FEBS Lett. 1983;154(2):357–61. Epub 1983/04/18. PubMed PMID: 6219896CrossRef Utermann G, Weber W. Protein composition of Lp(a) lipoprotein from human plasma. FEBS Lett. 1983;154(2):357–61. Epub 1983/04/18. PubMed PMID: 6219896CrossRef
7.
go back to reference Romagnuolo R, Scipione CA, Boffa MB, Marcovina SM, Seidah NG, Koschinsky ML. Lipoprotein(a) catabolism is regulated by proprotein convertase subtilisin/kexin type 9 through the low density lipoprotein receptor. J Biol Chem. 2015;290(18):11649–62.CrossRef Romagnuolo R, Scipione CA, Boffa MB, Marcovina SM, Seidah NG, Koschinsky ML. Lipoprotein(a) catabolism is regulated by proprotein convertase subtilisin/kexin type 9 through the low density lipoprotein receptor. J Biol Chem. 2015;290(18):11649–62.CrossRef
8.
go back to reference Shimaoka T, Kume N, Minami M, Hayashida K, Kataoka H, Kita T, et al. Molecular cloning of a novel scavenger receptor for oxidized low density lipoprotein, SR-PSOX, on macrophages. J Biol Chem. 2000;275(52):40663–6.CrossRef Shimaoka T, Kume N, Minami M, Hayashida K, Kataoka H, Kita T, et al. Molecular cloning of a novel scavenger receptor for oxidized low density lipoprotein, SR-PSOX, on macrophages. J Biol Chem. 2000;275(52):40663–6.CrossRef
9.
go back to reference Izquierdo MC, Martin-Cleary C, Fernandez-Fernandez B, Elewa U, Sanchez-Nino MD, Carrero JJ, et al. CXCL16 in kidney and cardiovascular injury. Cytokine Growth Factor Rev. 2014;25(3):317–25.CrossRef Izquierdo MC, Martin-Cleary C, Fernandez-Fernandez B, Elewa U, Sanchez-Nino MD, Carrero JJ, et al. CXCL16 in kidney and cardiovascular injury. Cytokine Growth Factor Rev. 2014;25(3):317–25.CrossRef
10.
go back to reference Boffa MB, Koschinsky ML. Update on lipoprotein(a) as a cardiovascular risk factor and mediator. Curr Atheroscler Rep. 2013;15(10):360.CrossRef Boffa MB, Koschinsky ML. Update on lipoprotein(a) as a cardiovascular risk factor and mediator. Curr Atheroscler Rep. 2013;15(10):360.CrossRef
11.
go back to reference Kamstrup PR, Tybjaerg-Hansen A, Steffensen R, Nordestgaard BG. Genetically elevated lipoprotein(a) and increased risk of myocardial infarction. JAMA. 2009;301(22):2331–9. Epub 2009/06/11CrossRef Kamstrup PR, Tybjaerg-Hansen A, Steffensen R, Nordestgaard BG. Genetically elevated lipoprotein(a) and increased risk of myocardial infarction. JAMA. 2009;301(22):2331–9. Epub 2009/06/11CrossRef
12.
go back to reference Pedersen TX, McCormick SP, Tsimikas S, Bro S, Nielsen LB. Lipoprotein(a) accelerates atherosclerosis in uremic mice. J Lipid Res. 2010;51(10):2967–75.CrossRef Pedersen TX, McCormick SP, Tsimikas S, Bro S, Nielsen LB. Lipoprotein(a) accelerates atherosclerosis in uremic mice. J Lipid Res. 2010;51(10):2967–75.CrossRef
13.
go back to reference Kitajima S, Jin Y, Koike T, Yu Y, Liu E, Shiomi M, et al. Lp(a) enhances coronary atherosclerosis in transgenic Watanabe heritable hyperlipidemic rabbits. Atherosclerosis. 2007;193(2):269–76.CrossRef Kitajima S, Jin Y, Koike T, Yu Y, Liu E, Shiomi M, et al. Lp(a) enhances coronary atherosclerosis in transgenic Watanabe heritable hyperlipidemic rabbits. Atherosclerosis. 2007;193(2):269–76.CrossRef
14.
go back to reference Edmiston JB, Brooks N, Tavori H, Minnier J, Duell B, Purnell JQ, et al. Discordant response of low-density lipoprotein cholesterol and lipoprotein(a) levels to monoclonal antibodies targeting proprotein convertase subtilisin/kexin type 9. J Clin Lipidol. 2017;11(3):667–73.CrossRef Edmiston JB, Brooks N, Tavori H, Minnier J, Duell B, Purnell JQ, et al. Discordant response of low-density lipoprotein cholesterol and lipoprotein(a) levels to monoclonal antibodies targeting proprotein convertase subtilisin/kexin type 9. J Clin Lipidol. 2017;11(3):667–73.CrossRef
15.
go back to reference Raal FJ, Giugliano RP, Sabatine MS, Koren MJ, Blom D, Seidah NG, et al. PCSK9 inhibition-mediated reduction in Lp(a) with evolocumab: an analysis of 10 clinical trials and the LDL receptor's role. J Lipid Res. 2016;57(6):1086–96.CrossRef Raal FJ, Giugliano RP, Sabatine MS, Koren MJ, Blom D, Seidah NG, et al. PCSK9 inhibition-mediated reduction in Lp(a) with evolocumab: an analysis of 10 clinical trials and the LDL receptor's role. J Lipid Res. 2016;57(6):1086–96.CrossRef
16.
go back to reference Niemeier A, Willnow T, Dieplinger H, Jacobsen C, Meyer N, Hilpert J, et al. Identification of megalin/gp330 as a receptor for lipoprotein(a) in vitro. Arterioscler Thromb Vasc Biol. 1999;19(3):552–61.CrossRef Niemeier A, Willnow T, Dieplinger H, Jacobsen C, Meyer N, Hilpert J, et al. Identification of megalin/gp330 as a receptor for lipoprotein(a) in vitro. Arterioscler Thromb Vasc Biol. 1999;19(3):552–61.CrossRef
17.
go back to reference Yang XP, Amar MJ, Vaisman B, Bocharov AV, Vishnyakova TG, Freeman LA, et al. Scavenger receptor-BI is a receptor for lipoprotein(a). J Lipid Res. 2013;54(9):2450–7.CrossRef Yang XP, Amar MJ, Vaisman B, Bocharov AV, Vishnyakova TG, Freeman LA, et al. Scavenger receptor-BI is a receptor for lipoprotein(a). J Lipid Res. 2013;54(9):2450–7.CrossRef
18.
go back to reference Ma KL, Gong TK, Hu ZB, Zhang Y, Wang GH, Liu L, et al. Lipoprotein(a) acclerated the progression of atherosclerosis in patients with end-stage renal disease. Nephrol Dial Transplant. 2017;32(3):iii659–60.CrossRef Ma KL, Gong TK, Hu ZB, Zhang Y, Wang GH, Liu L, et al. Lipoprotein(a) acclerated the progression of atherosclerosis in patients with end-stage renal disease. Nephrol Dial Transplant. 2017;32(3):iii659–60.CrossRef
Metadata
Title
Lipoprotein(a) accelerated the progression of atherosclerosis in patients with end-stage renal disease
Authors
Kun Ling Ma
Tie Kai Gong
Ze Bo Hu
Yang Zhang
Gui Hua Wang
Liang Liu
Pei Pei Chen
Jian Lu
Chen Chen Lu
Bi Cheng Liu
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Nephrology / Issue 1/2018
Electronic ISSN: 1471-2369
DOI
https://doi.org/10.1186/s12882-018-0986-2

Other articles of this Issue 1/2018

BMC Nephrology 1/2018 Go to the issue