Skip to main content
Top
Published in: BMC Nephrology 1/2018

Open Access 01-12-2018 | Research article

A comparison of temporal artery thermometers with internal blood monitors to measure body temperature during hemodialysis

Authors: Meaghan Lunney, Bronwyn Tonelli, Rachel Lewis, Natasha Wiebe, Chandra Thomas, Jennifer MacRae, Marcello Tonelli

Published in: BMC Nephrology | Issue 1/2018

Login to get access

Abstract

Background

Thermometers that measure core (internal) body temperature are the gold standard for monitoring temperature. Despite that most modern hemodialysis machines are equipped with an internal blood monitor that measures core body temperature, current practice is to use peripheral thermometers. A better understanding of how peripheral thermometers compare with the dialysis machine thermometer may help guide practice.

Methods

The study followed a prospective cross-sectional design. Hemodialysis patients were recruited from 2 sites in Calgary, Alberta (April – June 2017). Body temperatures were obtained from peripheral (temporal artery) and dialysis machine thermometers concurrently. Paired t-tests, Bland-Altman plots, and quantile-quantile plots were used to compare measurements from the two devices and to explore potential factors affecting temperature in hemodialysis patients.

Results

The mean body temperature of 94 hemodialysis patients measured using the temporal artery thermometer (36.7 °C) was significantly different than the dialysis machine thermometer (36.4 °C); p < 0.001. The mean difference (0.27 °C) appeared to be consistent across average temperature (range: 35.8–37.3 °C).

Conclusions

Temperature measured by the temporal artery thermometer was statistically and clinically higher than that measured by the dialysis machine thermometer. Using the dialysis machine to monitor body temperature may result in more accurate readings and is likely to reduce the purchasing and maintenance costs associated with manual temperature readings, as well as easing the workload for dialysis staff.
Literature
1.
go back to reference Niven DJ, Gaudet JE, Laupland KB, Mrklas KJ, Roberts DJ, Stelfox HT. Accuracy of peripheral thermometers for estimating temperature: a systematic review and meta-analysis. Ann Intern Med. 2015;163:768–77.CrossRefPubMed Niven DJ, Gaudet JE, Laupland KB, Mrklas KJ, Roberts DJ, Stelfox HT. Accuracy of peripheral thermometers for estimating temperature: a systematic review and meta-analysis. Ann Intern Med. 2015;163:768–77.CrossRefPubMed
3.
go back to reference Greenes DS, Fleisher GR. Accuracy of a noninvasive temporal artery thermometer for use in infants. Arch Pediatr Adolesc Med. 2001;155:376–81.CrossRefPubMed Greenes DS, Fleisher GR. Accuracy of a noninvasive temporal artery thermometer for use in infants. Arch Pediatr Adolesc Med. 2001;155:376–81.CrossRefPubMed
4.
go back to reference Hebbar K, Fortenberry J, Rogers K, Merritt R, Easley K. Comparison of temporal artery thermometer to standard temperature measurements in pediatric intensive care unit patients. Pediatr Crit Care Med. 2005;6:557–61.CrossRefPubMed Hebbar K, Fortenberry J, Rogers K, Merritt R, Easley K. Comparison of temporal artery thermometer to standard temperature measurements in pediatric intensive care unit patients. Pediatr Crit Care Med. 2005;6:557–61.CrossRefPubMed
5.
go back to reference Roy S, Powell K, Gerson LW. Temporal artery temperature measurements in healthy infants, children, and adolescents. Clin Pediatr. 2003;42:433–7.CrossRef Roy S, Powell K, Gerson LW. Temporal artery temperature measurements in healthy infants, children, and adolescents. Clin Pediatr. 2003;42:433–7.CrossRef
6.
go back to reference Bland JM, Altman DG. Measuring agreement in method comparison studies. Stat Methods Med Res. 1999;8:135–60.CrossRefPubMed Bland JM, Altman DG. Measuring agreement in method comparison studies. Stat Methods Med Res. 1999;8:135–60.CrossRefPubMed
7.
go back to reference Hernandez JM, Upadhye S. Do peripheral thermometers accurately correlate to Core body temperature? Ann Emerg Med. 2016;68:562–3.CrossRefPubMed Hernandez JM, Upadhye S. Do peripheral thermometers accurately correlate to Core body temperature? Ann Emerg Med. 2016;68:562–3.CrossRefPubMed
8.
go back to reference Geijer H, Udumyan R, Lohse G, Nilsagard Y. Temperature measurements with a temporal scanner: systematic review and meta-analysis. BMJ Open. 2016;6:e009509.CrossRefPubMedPubMedCentral Geijer H, Udumyan R, Lohse G, Nilsagard Y. Temperature measurements with a temporal scanner: systematic review and meta-analysis. BMJ Open. 2016;6:e009509.CrossRefPubMedPubMedCentral
9.
go back to reference Kiekkas P, Stefanopoulos N, Bakalis N, Kefaliakos A, Karanikolas M. Agreement of infrared temporal artery thermometry with other thermometry methods in adults: systematic review. J Clin Nurs. 2016;25:894–905.CrossRefPubMed Kiekkas P, Stefanopoulos N, Bakalis N, Kefaliakos A, Karanikolas M. Agreement of infrared temporal artery thermometry with other thermometry methods in adults: systematic review. J Clin Nurs. 2016;25:894–905.CrossRefPubMed
10.
go back to reference Kimberger O, Cohen D, Illievich U, Lenhardt R. Temporal artery versus bladder thermometry during perioperative and intensive care unit monitoring. Anesth Analg. 2007;105:1042–7.CrossRefPubMed Kimberger O, Cohen D, Illievich U, Lenhardt R. Temporal artery versus bladder thermometry during perioperative and intensive care unit monitoring. Anesth Analg. 2007;105:1042–7.CrossRefPubMed
11.
go back to reference Mackowiak PA, Wasserman SS, Levine MM. A critical appraisal of 98.6 degrees F, the upper limit of the normal body temperature, and other legacies of Carl Reinhold August Wunderlich. JAMA. 1992;268:1578–80.CrossRefPubMed Mackowiak PA, Wasserman SS, Levine MM. A critical appraisal of 98.6 degrees F, the upper limit of the normal body temperature, and other legacies of Carl Reinhold August Wunderlich. JAMA. 1992;268:1578–80.CrossRefPubMed
12.
go back to reference Usvyat LA, Kotanko P, van der Sande FM, Kooman JP, Carter M, Leunissen KML, Levin NW. Circadian variations in body temperature during dialysis. Nephrol Dial Transplant. 2012;27:1139–44.CrossRefPubMed Usvyat LA, Kotanko P, van der Sande FM, Kooman JP, Carter M, Leunissen KML, Levin NW. Circadian variations in body temperature during dialysis. Nephrol Dial Transplant. 2012;27:1139–44.CrossRefPubMed
Metadata
Title
A comparison of temporal artery thermometers with internal blood monitors to measure body temperature during hemodialysis
Authors
Meaghan Lunney
Bronwyn Tonelli
Rachel Lewis
Natasha Wiebe
Chandra Thomas
Jennifer MacRae
Marcello Tonelli
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Nephrology / Issue 1/2018
Electronic ISSN: 1471-2369
DOI
https://doi.org/10.1186/s12882-018-0938-x

Other articles of this Issue 1/2018

BMC Nephrology 1/2018 Go to the issue