Skip to main content
Top
Published in: BMC Nephrology 1/2017

Open Access 01-12-2017 | Research article

On-line hemodiafiltration did not induce an overproduction of oxidative stress and inflammatory cytokines in intensive care unit-acute kidney injury

Authors: Kada Klouche, Laurent Amigues, Marion Morena, Vincent Brunot, Anne Marie Dupuy, Audrey Jaussent, Marie Christine Picot, Noémie Besnard, Delphine Daubin, Jean Paul Cristol

Published in: BMC Nephrology | Issue 1/2017

Login to get access

Abstract

Background

Though on-line intermittent hemodiafiltration (OL-IHDF) is a routine therapy for chronic dialysis patients, it is not yet widespread used in critically ill patients. This study was undergone to evaluate efficiency and tolerance of OL-IHDF and to appreciate inflammatory consequences of its use in intensive care unit (ICU)-acute kidney injury (AKI) patients.

Methods

In this prospective cohort study conducted in a medical academic ICU in France, 30 AKI patients who underwent OL-IHDF were included. OL-HDF used an ultrapure water production: AQ 1250 line with double reverse osmosis, a generator 5008 with a 1.8m2 dialyzer with Polysulfone membrane (Fresenius Medical Care). Tolerance and efficiency of OL-IHDF were evaluated as well as its inflammatory risk by the measurement of plasma concentrations of proinflammatory (Interleukin 6, IL1β, IL8, Interferon γ) and anti-inflammatory (IL4, IL10) cytokines, Epidermal growth factor (EGF), Vascular Endothelial growth factor (VEGF) and Macrophage Chemoattractive Protein-1 (MCP-1) before and after sessions.

Results

Intradialytic hypotensive events were observed during 27/203 OL-IHDF sessions accounting for a mal-tolerated session’s rate at 13.3%. Mean delivered urea Kt/V per session was 1.12 ± 0.27 with a percentage of reduction for urea, creatinine, β2-microglobulin and cystatine C at 61.6 ± 8.8%, 55.3 ± 6.7%, 51.5 ± 8.7% and 44.5 ± 9.8% respectively. Production of superoxide anion by leukocytes, mean levels of pro- and anti-inflammatory cytokines and plasmatic concentrations of EGF, VEGF and MCP-1 did not differ before and after OL-IHDF sessions. We observed however a significant decrease of mean TNFα plasmatic concentrations from 8.2 ± 5.8 to 4.8 ± 3.5 pg/ml at the end of OL-IHDF.

Conclusions

OL-IHDF was not associated with an increase in pro and anti-inflammatory cytokines, oxidative stress or EGF, VEGF and MCP-1 in AKI patients and seems therefore a secure and feasible modality in ICUs.
Literature
1.
go back to reference Uchino S, Kellum JA, Bellomo R, Doig GS, Morimatsu H, Morgera S, et al. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA. 2005;294:813–8.CrossRefPubMed Uchino S, Kellum JA, Bellomo R, Doig GS, Morimatsu H, Morgera S, et al. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA. 2005;294:813–8.CrossRefPubMed
2.
go back to reference Vinsonneau C, Camus C, Combes A, Costa de Beauregard MA, Klouche K, Boulain T, et al. Continuous venovenous haemodiafiltration versus intermittent haemodialysis for acute renal failure in patients with multiple-organ dysfunction syndrome: a multicentre randomised trial. Lancet. 2006;368:379–85.CrossRefPubMed Vinsonneau C, Camus C, Combes A, Costa de Beauregard MA, Klouche K, Boulain T, et al. Continuous venovenous haemodiafiltration versus intermittent haemodialysis for acute renal failure in patients with multiple-organ dysfunction syndrome: a multicentre randomised trial. Lancet. 2006;368:379–85.CrossRefPubMed
3.
go back to reference Mehta RL, McDonald B, Gabbai FB, Pahl M, Pascual MT, Farkas A, et al. A randomized clinical trial of continuous versus intermittent dialysis for acute renal failure. Kidney Int. 2001;60:1154–63.CrossRefPubMed Mehta RL, McDonald B, Gabbai FB, Pahl M, Pascual MT, Farkas A, et al. A randomized clinical trial of continuous versus intermittent dialysis for acute renal failure. Kidney Int. 2001;60:1154–63.CrossRefPubMed
4.
go back to reference Saudan P, Niederberger M, De Seigneux S, Romand J, Pugin J, Perneger T, et al. Adding a dialysis dose to continuous hemofiltration increases survival in patients with acute renal failure. Kidney Int. 2006;70:1312–7.CrossRefPubMed Saudan P, Niederberger M, De Seigneux S, Romand J, Pugin J, Perneger T, et al. Adding a dialysis dose to continuous hemofiltration increases survival in patients with acute renal failure. Kidney Int. 2006;70:1312–7.CrossRefPubMed
5.
go back to reference Marshall MR, Ma T, Galler D, Rankin APN, Williams AB. Sustained low-efficiency daily diafiltration (SLEDD-f) for critically ill patients requiring renal replacement therapy: towards an adequate therapy. Nephrol Dial Transplant. 2004;19:877–84.CrossRefPubMed Marshall MR, Ma T, Galler D, Rankin APN, Williams AB. Sustained low-efficiency daily diafiltration (SLEDD-f) for critically ill patients requiring renal replacement therapy: towards an adequate therapy. Nephrol Dial Transplant. 2004;19:877–84.CrossRefPubMed
6.
go back to reference Abe M, Okada K, Suzuki M, Nagura C, Ishihara Y, Fujii Y, et al. Comparison of sustained hemodiafiltration with continuous venovenous hemodiafiltration for the treatment of critically ill patients with acute kidney injury. Artif Organs. 2010;34:331–8.CrossRefPubMed Abe M, Okada K, Suzuki M, Nagura C, Ishihara Y, Fujii Y, et al. Comparison of sustained hemodiafiltration with continuous venovenous hemodiafiltration for the treatment of critically ill patients with acute kidney injury. Artif Organs. 2010;34:331–8.CrossRefPubMed
7.
go back to reference Kron J, Kron S, Wenkel R, Schuhmacher H-U, Thieme U, Leimbach T, et al. Extended daily on-line high-volume haemodiafiltration in septic multiple organ failure: a well-tolerated and feasible procedure. Nephrol Dial Transplant. 2012;27:146–52.CrossRefPubMed Kron J, Kron S, Wenkel R, Schuhmacher H-U, Thieme U, Leimbach T, et al. Extended daily on-line high-volume haemodiafiltration in septic multiple organ failure: a well-tolerated and feasible procedure. Nephrol Dial Transplant. 2012;27:146–52.CrossRefPubMed
8.
go back to reference Nistor I, Palmer SC, Craig JC, Saglimbene V, Vecchio M, Covic A, Strippoli GF. Convective versus diffusive dialysis therapies for chronic kidney failure: an updated systematic revierw of randomized controlled trials. Am J Kidney Dis. 2014;63:954–67.CrossRefPubMed Nistor I, Palmer SC, Craig JC, Saglimbene V, Vecchio M, Covic A, Strippoli GF. Convective versus diffusive dialysis therapies for chronic kidney failure: an updated systematic revierw of randomized controlled trials. Am J Kidney Dis. 2014;63:954–67.CrossRefPubMed
9.
go back to reference Nistor I, Palmer SC, Craig JC, Saglimbene V, Vecchio M, Covic A, Strippoli GF. Haemodiafiltration, haemofiltration and haemodialysis for end-stage kidney disease. Cochrane Database Syst Rev. 2015;5:CD006258. Nistor I, Palmer SC, Craig JC, Saglimbene V, Vecchio M, Covic A, Strippoli GF. Haemodiafiltration, haemofiltration and haemodialysis for end-stage kidney disease. Cochrane Database Syst Rev. 2015;5:CD006258.
10.
go back to reference Morena M, Jaussent A, Chalabi L, Leray-Moragues H, Chenine L, Debure A, Thibaudin D, et al. Treatment tolerance and patient-reported outcomes favor online hemodiafiltration compared to high-flux hemodialysis in the elderly. Kidney Int. 2017;17:30040–6. Morena M, Jaussent A, Chalabi L, Leray-Moragues H, Chenine L, Debure A, Thibaudin D, et al. Treatment tolerance and patient-reported outcomes favor online hemodiafiltration compared to high-flux hemodialysis in the elderly. Kidney Int. 2017;17:30040–6.
11.
go back to reference Klouche K, Amigues L, Serveaux-Delous M, Machado S, Delabre J-P, Laydet E, et al. Implementing on-line hemodiafiltration as a renal replacement therapy for ICU acute renal failure: a single-center report of feasibility, safety and hemodynamic tolerance over a seven-year period. Blood Purif. 2012;34:10–7.CrossRefPubMed Klouche K, Amigues L, Serveaux-Delous M, Machado S, Delabre J-P, Laydet E, et al. Implementing on-line hemodiafiltration as a renal replacement therapy for ICU acute renal failure: a single-center report of feasibility, safety and hemodynamic tolerance over a seven-year period. Blood Purif. 2012;34:10–7.CrossRefPubMed
12.
go back to reference Pettilä V, Tiula E. Intermittent hemodiafiltration in acute renal failure in critically ill patients. Clin Nephrol. 2001;56:324–31.PubMed Pettilä V, Tiula E. Intermittent hemodiafiltration in acute renal failure in critically ill patients. Clin Nephrol. 2001;56:324–31.PubMed
13.
go back to reference Laurent I, Adrie C, Vinsonneau C, Cariou A, Chiche J-D, Ohanessian A, et al. High-volume hemofiltration after out-of-hospital cardiac arrest: a randomized study. J Am Coll Cardiol. 2005;46:432–7.CrossRefPubMed Laurent I, Adrie C, Vinsonneau C, Cariou A, Chiche J-D, Ohanessian A, et al. High-volume hemofiltration after out-of-hospital cardiac arrest: a randomized study. J Am Coll Cardiol. 2005;46:432–7.CrossRefPubMed
15.
16.
go back to reference Kumar VA, Yeun JY, Depner TA, Don BR. Extended daily dialysis vs. continuous hemodialysis for ICU patients with acute renal failure: a two-year single center report. Int J Artif Organs. 2004;27:371–9.PubMed Kumar VA, Yeun JY, Depner TA, Don BR. Extended daily dialysis vs. continuous hemodialysis for ICU patients with acute renal failure: a two-year single center report. Int J Artif Organs. 2004;27:371–9.PubMed
17.
go back to reference Kielstein JT, Kretschmer U, Ernst T, Hafer C, Bahr MJ, Haller H, et al. Efficacy and cardiovascular tolerability of extended dialysis in critically ill patients: a randomized controlled study. Am J Kidney Dis. 2004;43:342–9.CrossRefPubMed Kielstein JT, Kretschmer U, Ernst T, Hafer C, Bahr MJ, Haller H, et al. Efficacy and cardiovascular tolerability of extended dialysis in critically ill patients: a randomized controlled study. Am J Kidney Dis. 2004;43:342–9.CrossRefPubMed
18.
go back to reference Le Gall JR, Lemeshow S, Saulnier F. A new simplified acute physiology score (SAPS II) based on a European/north American multicenter study. JAMA. 1993;270:2957–63.CrossRefPubMed Le Gall JR, Lemeshow S, Saulnier F. A new simplified acute physiology score (SAPS II) based on a European/north American multicenter study. JAMA. 1993;270:2957–63.CrossRefPubMed
19.
go back to reference Vincent JL, Moreno R, Takala J, Willatts S, De Mendonça A, Bruining H, et al. The SOFA (sepsis-related organ failure assessment) score to describe organ dysfunction/failure. On behalf of the working group on sepsis-related problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996;22:707–10.CrossRefPubMed Vincent JL, Moreno R, Takala J, Willatts S, De Mendonça A, Bruining H, et al. The SOFA (sepsis-related organ failure assessment) score to describe organ dysfunction/failure. On behalf of the working group on sepsis-related problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996;22:707–10.CrossRefPubMed
20.
go back to reference KDIGO AKI Work Group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl. 2012;17:1–138. KDIGO AKI Work Group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl. 2012;17:1–138.
21.
go back to reference Canaud B, Bosc JY, Leray H, Stec F, Argiles A, Leblanc M, et al. On-line haemodiafiltration: state of the art. Nephrol Dial Transplant. 1998;13(Suppl 5):3–11.CrossRefPubMed Canaud B, Bosc JY, Leray H, Stec F, Argiles A, Leblanc M, et al. On-line haemodiafiltration: state of the art. Nephrol Dial Transplant. 1998;13(Suppl 5):3–11.CrossRefPubMed
22.
go back to reference Canaud B, Bosc JY, Leray H, Stec F. Microbiological purity of dialysate for on-line substitution fluid preparation. Nephrol Dial Transplant. 2000;15(Suppl 2):21–30.CrossRef Canaud B, Bosc JY, Leray H, Stec F. Microbiological purity of dialysate for on-line substitution fluid preparation. Nephrol Dial Transplant. 2000;15(Suppl 2):21–30.CrossRef
23.
go back to reference Pegues DA, Oettinger CW, Bland LA, Oliver JC, Arduino MJ, Aguero SM, et al. A prospective study of pyrogenic reactions in hemodialysis patients using bicarbonate dialysis fluids filtered to remove bacteria and endotoxin. J Am Soc Nephrol. 1992;3:1002–7.PubMed Pegues DA, Oettinger CW, Bland LA, Oliver JC, Arduino MJ, Aguero SM, et al. A prospective study of pyrogenic reactions in hemodialysis patients using bicarbonate dialysis fluids filtered to remove bacteria and endotoxin. J Am Soc Nephrol. 1992;3:1002–7.PubMed
24.
go back to reference NKF-DOQI clinical practice guidelines for hemodialysis adequacy. Am J Kidney Dis. 1997;30:suppl2 S38-S42. NKF-DOQI clinical practice guidelines for hemodialysis adequacy. Am J Kidney Dis. 1997;30:suppl2 S38-S42.
25.
go back to reference Bergström J, Wehle B. No change in corrected beta 2-microglobulin concentration after cuprophane haemodialysis. Lancet. 1987;1:628–9.CrossRefPubMed Bergström J, Wehle B. No change in corrected beta 2-microglobulin concentration after cuprophane haemodialysis. Lancet. 1987;1:628–9.CrossRefPubMed
26.
go back to reference Daugirdas JT. Second generation logarithmic estimates of single-pool variable volume Kt/V: an analysis of error. J Am Soc Nephrol. 1993;4:1205–13.PubMed Daugirdas JT. Second generation logarithmic estimates of single-pool variable volume Kt/V: an analysis of error. J Am Soc Nephrol. 1993;4:1205–13.PubMed
27.
go back to reference Badiou S, Dupuy AM, Descomps B, Cristolead JP. Comparison between the enzymatic vitros assay for creatinine determination and three other methods adapted on the Olympus analyzer. J Clin Lab Anal. 2003;17:235–40.CrossRefPubMed Badiou S, Dupuy AM, Descomps B, Cristolead JP. Comparison between the enzymatic vitros assay for creatinine determination and three other methods adapted on the Olympus analyzer. J Clin Lab Anal. 2003;17:235–40.CrossRefPubMed
28.
go back to reference Ventura E, Durant R, Jaussent A, Picot M-C, Morena M, Badiou S, et al. Homocysteine and inflammation as main determinants of oxidative stress in the elderly. Free Radic Biol Med. 2009;46:737–44.CrossRefPubMed Ventura E, Durant R, Jaussent A, Picot M-C, Morena M, Badiou S, et al. Homocysteine and inflammation as main determinants of oxidative stress in the elderly. Free Radic Biol Med. 2009;46:737–44.CrossRefPubMed
29.
go back to reference Dupuy AM, Lehmann S, Cristol JP. Protein biochip systems for the clinical laboratory. Clin Chem Lab Med. 2005;43:1291–302.PubMed Dupuy AM, Lehmann S, Cristol JP. Protein biochip systems for the clinical laboratory. Clin Chem Lab Med. 2005;43:1291–302.PubMed
30.
go back to reference Witko-Sarsat V, Friedlander M, Capeillère-Blandin C, Nguyen-Khoa T, Nguyen AT, Zingraff J, et al. Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int. 1996;49:1304–13.CrossRefPubMed Witko-Sarsat V, Friedlander M, Capeillère-Blandin C, Nguyen-Khoa T, Nguyen AT, Zingraff J, et al. Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int. 1996;49:1304–13.CrossRefPubMed
31.
go back to reference Delample D, Durand F, Severac A, Belghith M, Mas E, Michel F, et al. Implication of xanthine oxidase in muscle oxidative stress in COPD patients. Free Radic Res. 2008;42:807–14.CrossRefPubMed Delample D, Durand F, Severac A, Belghith M, Mas E, Michel F, et al. Implication of xanthine oxidase in muscle oxidative stress in COPD patients. Free Radic Res. 2008;42:807–14.CrossRefPubMed
32.
go back to reference Canaud B, Barbieri C, Marcelli D, Bellocchio F, Bowry S, Mari F, et al. Optimal convection volume for improving patient outcomes in an international incident dialysis cohort treated with online hemodiafiltration. Kidney Int. 2015;88:1108–16.CrossRefPubMedPubMedCentral Canaud B, Barbieri C, Marcelli D, Bellocchio F, Bowry S, Mari F, et al. Optimal convection volume for improving patient outcomes in an international incident dialysis cohort treated with online hemodiafiltration. Kidney Int. 2015;88:1108–16.CrossRefPubMedPubMedCentral
33.
go back to reference Tsuchida K, Takemoto Y, Yamagami S, Edney H, Niwa M, Tsuchiya M, et al. Detection of peptidoglycan and endotoxin in dialysate, using silkworm larvae plasma and limulus amebocyte lysate methods. Nephron. 1997;75:438–43.CrossRefPubMed Tsuchida K, Takemoto Y, Yamagami S, Edney H, Niwa M, Tsuchiya M, et al. Detection of peptidoglycan and endotoxin in dialysate, using silkworm larvae plasma and limulus amebocyte lysate methods. Nephron. 1997;75:438–43.CrossRefPubMed
34.
go back to reference Schindler R, Krautzig S, Lufft V, Lonnemann G, Mahiout A, Marra MN, et al. Induction of interleukin-1 and interleukin-1 receptor antagonist during contaminated in-vitro dialysis with whole blood. Nephrol Dial Transplant. 1996;11:101–8.CrossRefPubMed Schindler R, Krautzig S, Lufft V, Lonnemann G, Mahiout A, Marra MN, et al. Induction of interleukin-1 and interleukin-1 receptor antagonist during contaminated in-vitro dialysis with whole blood. Nephrol Dial Transplant. 1996;11:101–8.CrossRefPubMed
35.
go back to reference Simmons EM, Himmelfarb J, Sezer MT, Chertow GM, Mehta RL, Paganini EP, et al. Plasma cytokine levels predict mortality in patients with acute renal failure. Kidney Int. 2004;65:1357–65.CrossRefPubMed Simmons EM, Himmelfarb J, Sezer MT, Chertow GM, Mehta RL, Paganini EP, et al. Plasma cytokine levels predict mortality in patients with acute renal failure. Kidney Int. 2004;65:1357–65.CrossRefPubMed
36.
go back to reference Chawla LS, Seneff MG, Nelson DR, Williams M, Levy H, Kimmel PL, et al. Elevated plasma concentrations of IL-6 and elevated APACHE II score predict acute kidney injury in patients with severe sepsis. Clin J Am Soc Nephrol. 2007;2:22–30.CrossRefPubMed Chawla LS, Seneff MG, Nelson DR, Williams M, Levy H, Kimmel PL, et al. Elevated plasma concentrations of IL-6 and elevated APACHE II score predict acute kidney injury in patients with severe sepsis. Clin J Am Soc Nephrol. 2007;2:22–30.CrossRefPubMed
37.
go back to reference Selmeci L, Seres L, Antal M, Lukács J, Regöly-Mérei A, Acsády G. Advanced oxidation protein products (AOPP) for monitoring oxidative stress in critically ill patients: a simple, fast and inexpensive automated technique. Clin Chem Lab Med. 2005;43:294–7.CrossRefPubMed Selmeci L, Seres L, Antal M, Lukács J, Regöly-Mérei A, Acsády G. Advanced oxidation protein products (AOPP) for monitoring oxidative stress in critically ill patients: a simple, fast and inexpensive automated technique. Clin Chem Lab Med. 2005;43:294–7.CrossRefPubMed
38.
go back to reference Lentini P, de Cal M, Cruz D, Chronopoulos A, Soni S, Nalesso F, et al. The role of advanced oxidation protein products in intensive care unit patients with acute kidney injury. J Crit Care. 2010;25:605–9.CrossRefPubMed Lentini P, de Cal M, Cruz D, Chronopoulos A, Soni S, Nalesso F, et al. The role of advanced oxidation protein products in intensive care unit patients with acute kidney injury. J Crit Care. 2010;25:605–9.CrossRefPubMed
39.
go back to reference Du S, Zeng X, Tian J, Ai J, Wan J, He J. Advanced oxidation protein products in predicting acute kidney injury following cardiac surgery. Biomarkers. 2015;20:206–11.CrossRefPubMed Du S, Zeng X, Tian J, Ai J, Wan J, He J. Advanced oxidation protein products in predicting acute kidney injury following cardiac surgery. Biomarkers. 2015;20:206–11.CrossRefPubMed
40.
go back to reference Li HY, Hou FF, Zhang X, Chen PY, Liu SX, Feng JX, et al. Advanced oxidation protein products accelerate renal fibrosis in a remnant kidney model. J Am Soc Nephrol. 2007;18:528–38.CrossRefPubMed Li HY, Hou FF, Zhang X, Chen PY, Liu SX, Feng JX, et al. Advanced oxidation protein products accelerate renal fibrosis in a remnant kidney model. J Am Soc Nephrol. 2007;18:528–38.CrossRefPubMed
41.
go back to reference Vaslaki L, Weber C, Mitteregger R, Falkenhagen D. Cytokine induction in patients undergoing regular online hemodiafiltration treatment. Artif Organs. 2000;24:514–8.CrossRefPubMed Vaslaki L, Weber C, Mitteregger R, Falkenhagen D. Cytokine induction in patients undergoing regular online hemodiafiltration treatment. Artif Organs. 2000;24:514–8.CrossRefPubMed
42.
go back to reference Kadiroglu AK, Sit D, Atay AE, Kayabasi H, Altintas A, Yilmaz ME. The evaluation of effects of demographic features, biochemical parameters, and cytokines on clinical outcomes in patients with acute renal failure. Ren Fail. 2007;29:503–8.CrossRefPubMed Kadiroglu AK, Sit D, Atay AE, Kayabasi H, Altintas A, Yilmaz ME. The evaluation of effects of demographic features, biochemical parameters, and cytokines on clinical outcomes in patients with acute renal failure. Ren Fail. 2007;29:503–8.CrossRefPubMed
43.
go back to reference Tamme K, Maddison L, Kruusat R, Ehrlich HE, Viirelaid M, Kern H, Starkopf J. Effects of high volume haemodiafiltration on inflammatory response profile and microcirculation in patients with septic shock. BioMed Research International. 2015; 125615. doi: 10.1155/2015/125615. Tamme K, Maddison L, Kruusat R, Ehrlich HE, Viirelaid M, Kern H, Starkopf J. Effects of high volume haemodiafiltration on inflammatory response profile and microcirculation in patients with septic shock. BioMed Research International. 2015; 125615. doi: 10.​1155/​2015/​125615.
44.
go back to reference van der Flier M, van Leeuwen HJ, van Kessel KP, Kimpen JL, Hoepelman AI, Geelen SP. Plasma vascular endothelial growth factor in severe sepsis. Shock. 2005;23:35–8.CrossRefPubMed van der Flier M, van Leeuwen HJ, van Kessel KP, Kimpen JL, Hoepelman AI, Geelen SP. Plasma vascular endothelial growth factor in severe sepsis. Shock. 2005;23:35–8.CrossRefPubMed
45.
go back to reference Pickkers P, Sprong T, van Eijk L, van der Hoeven H, Smits P, van Deuren M. Vascular endothelial growth factor is increased during the first 48 hours of human septic shock and correlates with vascular permeability. Shock. 2005;24:508–12.CrossRefPubMed Pickkers P, Sprong T, van Eijk L, van der Hoeven H, Smits P, van Deuren M. Vascular endothelial growth factor is increased during the first 48 hours of human septic shock and correlates with vascular permeability. Shock. 2005;24:508–12.CrossRefPubMed
46.
go back to reference Chancharoenthana W, Tiranathanagul K, Srisawat N, Susantitaphong P, Leelahavanichkul A, Praditpornsilpa K, et al. Enhanced vascular endothelial growth factor and inflammatory cytokine removal with online hemodiafiltration over high-flux hemodialysis in sepsis-related acute kidney injury patients. Ther Apher Dial. 2013;17:557–63. Chancharoenthana W, Tiranathanagul K, Srisawat N, Susantitaphong P, Leelahavanichkul A, Praditpornsilpa K, et al. Enhanced vascular endothelial growth factor and inflammatory cytokine removal with online hemodiafiltration over high-flux hemodialysis in sepsis-related acute kidney injury patients. Ther Apher Dial. 2013;17:557–63.
47.
go back to reference The VA/NIH Acute Renal Failure Trial Network. Intensity of renal support in critically ill patients with acute kidney injury. N Engl J Med. 2008;359:7–20.CrossRefPubMedCentral The VA/NIH Acute Renal Failure Trial Network. Intensity of renal support in critically ill patients with acute kidney injury. N Engl J Med. 2008;359:7–20.CrossRefPubMedCentral
Metadata
Title
On-line hemodiafiltration did not induce an overproduction of oxidative stress and inflammatory cytokines in intensive care unit-acute kidney injury
Authors
Kada Klouche
Laurent Amigues
Marion Morena
Vincent Brunot
Anne Marie Dupuy
Audrey Jaussent
Marie Christine Picot
Noémie Besnard
Delphine Daubin
Jean Paul Cristol
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Nephrology / Issue 1/2017
Electronic ISSN: 1471-2369
DOI
https://doi.org/10.1186/s12882-017-0785-1

Other articles of this Issue 1/2017

BMC Nephrology 1/2017 Go to the issue