Skip to main content
Top
Published in: BMC Nephrology 1/2017

Open Access 01-12-2017 | Research article

Effect of renal perfusion and structural heterogeneity on shear wave elastography of the kidney: an in vivo and ex vivo study

Authors: Xiaona Liu, Na Li, Tao Xu, Fang Sun, Rui Li, Qimin Gao, Lianxiang Chen, Chaoyang Wen

Published in: BMC Nephrology | Issue 1/2017

Login to get access

Abstract

Background

To evaluate the effect of perfusion status on elasticity measurements of different compartments in the kidney using shear wave elastography (SWE) both in vivo and ex vivo.

Methods

Thirty-two rabbit kidneys were used to observe the elasticity variation caused by renal artery stenosis and vein ligation in vivo, and six beagle kidneys were studied ex vivo to explore the effect of renal perfusion on elasticity. Supersonic SWE was applied to quantify the elasticity values of different renal compartments (cortex, medulla and sinus). Additionally, histopathological examination was performed to explore the possible mechanisms.

Results

The elasticity of the cortex was higher than that of the medulla, and the elasticity of the sinus was lowest among the compartments in native kidneys. The Young’s modulus (YM) of the cortex, medulla and sinus increased gradually as the duration of renal vein ligation increased, from 16.34 ± 1.01 kPa to 55.06 ± 5.61 kPa, 13.71 ± 1.16 kPa to 39.63 ± 2.91 kPa, and 12.61 ± 0.84 kPa to 29.30 ± 2.04 kPa, respectively. In contrast, the YM of the three compartments respectively decreased with progressive artery stenosis, from 16.34 ± 1.83 kPa to 11.21 ± 1.79 kPa, 13.31 ± 1.67 kPa to 8.07 ± 1.37 kPa, and 12.78 ± 2.66 kPa to 6.72 ± 0.95 kPa. Artery perfusion was the main factor influencing elasticity in ex vivo. The cortical elasticity was more prone to change with renal perfusion both in vivo and ex vivo. Histopathological examination showed progressive changes in the structure and content of the three compartments, consistent with the elasticity variation.

Conclusions

Both the complex structure/anisotropy and the perfusion of the kidney obviously influence the evaluation of renal elasticity. The measurement of SWE should be performed at a specific location along a certain angle or direction, and renal perfusion status should also be taken into account to ensure reproducible detection.
Literature
1.
go back to reference Tada T, Kumada T, Toyoda H, et al. Utility of real-time shear wave elastography for assessing liver fibrosis in patients with chronic hepatitis C infection without cirrhosis: comparison of liver fibrosis indices. Hepatol Res. 2015;45(10):E122–9.CrossRefPubMed Tada T, Kumada T, Toyoda H, et al. Utility of real-time shear wave elastography for assessing liver fibrosis in patients with chronic hepatitis C infection without cirrhosis: comparison of liver fibrosis indices. Hepatol Res. 2015;45(10):E122–9.CrossRefPubMed
2.
go back to reference Samir AE, Dhyani M, Vij A, et al. Shear-wave elastography for the estimation of liver fibrosis in chronic liver disease: determining accuracy and ideal site for measurement. Radiology. 2015;274(3):888–96.CrossRefPubMed Samir AE, Dhyani M, Vij A, et al. Shear-wave elastography for the estimation of liver fibrosis in chronic liver disease: determining accuracy and ideal site for measurement. Radiology. 2015;274(3):888–96.CrossRefPubMed
3.
go back to reference Franchi-Abella S, Corno L, Gonzales E, et al. Feasibility and diagnostic accuracy of supersonic shear-wave Elastography for the assessment of liver stiffness and liver fibrosis in children: a pilot study of 96 patients. Radiology. 2016;278(2):554–62.CrossRefPubMed Franchi-Abella S, Corno L, Gonzales E, et al. Feasibility and diagnostic accuracy of supersonic shear-wave Elastography for the assessment of liver stiffness and liver fibrosis in children: a pilot study of 96 patients. Radiology. 2016;278(2):554–62.CrossRefPubMed
4.
go back to reference Chen S, Sanchez W, Callstrom MR, et al. Assessment of liver viscoelasticity by using shear waves induced by ultrasound radiation force. Radiology. 2013;266(3):964–70.CrossRefPubMedPubMedCentral Chen S, Sanchez W, Callstrom MR, et al. Assessment of liver viscoelasticity by using shear waves induced by ultrasound radiation force. Radiology. 2013;266(3):964–70.CrossRefPubMedPubMedCentral
5.
go back to reference Samir AE, Allegretti AS, Zhu Q, et al. Shear wave elastography in chronic kidney disease: a pilot experience in native kidneys. BMC Nephrol. 2015;16:119.CrossRefPubMedPubMedCentral Samir AE, Allegretti AS, Zhu Q, et al. Shear wave elastography in chronic kidney disease: a pilot experience in native kidneys. BMC Nephrol. 2015;16:119.CrossRefPubMedPubMedCentral
6.
go back to reference Moon SK, Kim SY, Cho JY, et al. Quantification of kidney fibrosis using ultrasonic shear wave elastography: experimental study with a rabbit model. J Ultrasound Med. 2015;34(5):869–77.CrossRefPubMed Moon SK, Kim SY, Cho JY, et al. Quantification of kidney fibrosis using ultrasonic shear wave elastography: experimental study with a rabbit model. J Ultrasound Med. 2015;34(5):869–77.CrossRefPubMed
7.
go back to reference Grenier N, Poulain S, Lepreux S, et al. Quantitative elastography of renal transplants using supersonic shear imaging: a pilot study. Eur Radiol. 2012;22(10):2138–46.CrossRefPubMed Grenier N, Poulain S, Lepreux S, et al. Quantitative elastography of renal transplants using supersonic shear imaging: a pilot study. Eur Radiol. 2012;22(10):2138–46.CrossRefPubMed
8.
go back to reference Derieppe M, Delmas Y, Gennisson JL, et al. Detection of intrarenal microstructural changes with supersonic shear wave elastography in rats. Eur Radiol. 2012;22(1):243–50.CrossRefPubMed Derieppe M, Delmas Y, Gennisson JL, et al. Detection of intrarenal microstructural changes with supersonic shear wave elastography in rats. Eur Radiol. 2012;22(1):243–50.CrossRefPubMed
9.
go back to reference Menzilcioglu MS, Duymus M, Citil S, et al. Strain wave elastography for evaluation of renal parenchyma in chronic kidney disease. Br J Radiol. 2015;88(1050):20140714.CrossRefPubMedPubMedCentral Menzilcioglu MS, Duymus M, Citil S, et al. Strain wave elastography for evaluation of renal parenchyma in chronic kidney disease. Br J Radiol. 2015;88(1050):20140714.CrossRefPubMedPubMedCentral
10.
go back to reference Wang L, Xia P, Lv K, et al. Assessment of renal tissue elasticity by acoustic radiation force impulse quantification with histopathological correlation: preliminary experience in chronic kidney disease. Eur Radiol. 2014;24(7):1694–9.CrossRefPubMed Wang L, Xia P, Lv K, et al. Assessment of renal tissue elasticity by acoustic radiation force impulse quantification with histopathological correlation: preliminary experience in chronic kidney disease. Eur Radiol. 2014;24(7):1694–9.CrossRefPubMed
11.
go back to reference Guo LH, Xu HX, Fu HJ, et al. Acoustic radiation force impulse imaging for noninvasive evaluation of renal parenchyma elasticity: preliminary findings. PLoS One. 2013;8(7):e68925.CrossRefPubMedPubMedCentral Guo LH, Xu HX, Fu HJ, et al. Acoustic radiation force impulse imaging for noninvasive evaluation of renal parenchyma elasticity: preliminary findings. PLoS One. 2013;8(7):e68925.CrossRefPubMedPubMedCentral
12.
go back to reference Cui G, Yang Z, Zhang W, et al. Evaluation of acoustic radiation force impulse imaging for the clinicopathological typing of renal fibrosis. Exp Ther Med. 2014;7(1):233–5.PubMed Cui G, Yang Z, Zhang W, et al. Evaluation of acoustic radiation force impulse imaging for the clinicopathological typing of renal fibrosis. Exp Ther Med. 2014;7(1):233–5.PubMed
13.
go back to reference Correas JM, Anglicheau D, Joly D, et al. Ultrasound-based imaging methods of the kidney-recent developments. Kidney Int. 2016;90(6):1199–210.CrossRefPubMed Correas JM, Anglicheau D, Joly D, et al. Ultrasound-based imaging methods of the kidney-recent developments. Kidney Int. 2016;90(6):1199–210.CrossRefPubMed
14.
go back to reference Peride I, Radulescu D, Niculae A, et al. Value of ultrasound elastography in the diagnosis of native kidney fibrosis. Med Ultrason. 2016;18(3):362–9.CrossRefPubMed Peride I, Radulescu D, Niculae A, et al. Value of ultrasound elastography in the diagnosis of native kidney fibrosis. Med Ultrason. 2016;18(3):362–9.CrossRefPubMed
15.
go back to reference Syversveen T, Brabrand K, Midtvedt K, et al. Non-invasive assessment of renal allograft fibrosis by dynamic sonographic tissue perfusion measurement. Acta Radiol. 2011;52(8):920–6.CrossRefPubMed Syversveen T, Brabrand K, Midtvedt K, et al. Non-invasive assessment of renal allograft fibrosis by dynamic sonographic tissue perfusion measurement. Acta Radiol. 2011;52(8):920–6.CrossRefPubMed
16.
go back to reference Asano K, Ogata A, Tanaka K, et al. Acoustic radiation force impulse elastography of the kidneys: is shear wave velocity affected by tissue fibrosis or renal blood flow? J Ultrasound Med. 2014;33(5):793–801.CrossRefPubMed Asano K, Ogata A, Tanaka K, et al. Acoustic radiation force impulse elastography of the kidneys: is shear wave velocity affected by tissue fibrosis or renal blood flow? J Ultrasound Med. 2014;33(5):793–801.CrossRefPubMed
17.
go back to reference Warner L, Yin M, Glaser KJ, et al. Noninvasive in vivo assessment of renal tissue elasticity during graded renal ischemia using MR elastography. Investig Radiol. 2011;46(8):509–14.CrossRef Warner L, Yin M, Glaser KJ, et al. Noninvasive in vivo assessment of renal tissue elasticity during graded renal ischemia using MR elastography. Investig Radiol. 2011;46(8):509–14.CrossRef
18.
go back to reference Gennisson JL, Grenier N, Combe C, et al. Supersonic shear wave elastography of in vivo pig kidney: influence of blood pressure, urinary pressure and tissue anisotropy. Ultrasound Med Biol. 2012;38(9):1559–67.CrossRefPubMed Gennisson JL, Grenier N, Combe C, et al. Supersonic shear wave elastography of in vivo pig kidney: influence of blood pressure, urinary pressure and tissue anisotropy. Ultrasound Med Biol. 2012;38(9):1559–67.CrossRefPubMed
19.
go back to reference Grenier N, Gennisson JL, Cornelis F, et al. Renal ultrasound elastography. Diagn Interv Imaging. 2013;94(5):545–50.CrossRefPubMed Grenier N, Gennisson JL, Cornelis F, et al. Renal ultrasound elastography. Diagn Interv Imaging. 2013;94(5):545–50.CrossRefPubMed
20.
go back to reference Gennisson JL, Renier M, Catheline S, et al. Acoustoelasticity in soft solids: assessment of the nonlinear shear modulus with the acoustic radiation force. J Acoust Soc Am. 2007;122(6):3211–9.CrossRefPubMed Gennisson JL, Renier M, Catheline S, et al. Acoustoelasticity in soft solids: assessment of the nonlinear shear modulus with the acoustic radiation force. J Acoust Soc Am. 2007;122(6):3211–9.CrossRefPubMed
21.
go back to reference Goertz RS, Amann K, Heide R, et al. An abdominal and thyroid status with acoustic radiation force impulse Elastometry--a feasibility study: acoustic radiation force impulse Elastometry of human organs. Eur J Radiol. 2011;80(3):e226–30.CrossRefPubMed Goertz RS, Amann K, Heide R, et al. An abdominal and thyroid status with acoustic radiation force impulse Elastometry--a feasibility study: acoustic radiation force impulse Elastometry of human organs. Eur J Radiol. 2011;80(3):e226–30.CrossRefPubMed
22.
go back to reference Bob F, Bota S, Sporea I, et al. Kidney shear wave speed values in subjects with and without renal pathology and inter-operator reproducibility of acoustic radiation force impulse elastography (ARFI)--preliminary results. PLoS One. 2014;9(11):e113761.CrossRefPubMedPubMedCentral Bob F, Bota S, Sporea I, et al. Kidney shear wave speed values in subjects with and without renal pathology and inter-operator reproducibility of acoustic radiation force impulse elastography (ARFI)--preliminary results. PLoS One. 2014;9(11):e113761.CrossRefPubMedPubMedCentral
23.
go back to reference Ries M, Jones RA, Basseau F, et al. Diffusion tensor MRI of the human kidney. J Magn Reson Imaging. 2001;14(1):42–9.CrossRefPubMed Ries M, Jones RA, Basseau F, et al. Diffusion tensor MRI of the human kidney. J Magn Reson Imaging. 2001;14(1):42–9.CrossRefPubMed
24.
go back to reference Vigano M, Massironi S, Lampertico P, et al. Transient elastography assessment of the liver stiffness dynamics during acute hepatitis B. Eur J Gastroenterol Hepatol. 2010;22(2):180–4.CrossRefPubMed Vigano M, Massironi S, Lampertico P, et al. Transient elastography assessment of the liver stiffness dynamics during acute hepatitis B. Eur J Gastroenterol Hepatol. 2010;22(2):180–4.CrossRefPubMed
25.
go back to reference Lerman LO, Bentley MD, Bell MR, et al. Quantitation of the in vivo kidney volume with cine computed tomography. Investig Radiol. 1990;25(11):1206–11.CrossRef Lerman LO, Bentley MD, Bell MR, et al. Quantitation of the in vivo kidney volume with cine computed tomography. Investig Radiol. 1990;25(11):1206–11.CrossRef
Metadata
Title
Effect of renal perfusion and structural heterogeneity on shear wave elastography of the kidney: an in vivo and ex vivo study
Authors
Xiaona Liu
Na Li
Tao Xu
Fang Sun
Rui Li
Qimin Gao
Lianxiang Chen
Chaoyang Wen
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Nephrology / Issue 1/2017
Electronic ISSN: 1471-2369
DOI
https://doi.org/10.1186/s12882-017-0679-2

Other articles of this Issue 1/2017

BMC Nephrology 1/2017 Go to the issue