Skip to main content
Top
Published in: BMC Nephrology 1/2017

Open Access 01-12-2017 | Research article

Indole 3-acetic acid, indoxyl sulfate and paracresyl-sulfate do not influence anemia parameters in hemodialysis patients

Authors: Stanislas Bataille, Marion Pelletier, Marion Sallée, Yvon Berland, Nathalie McKay, Ariane Duval, Stéphanie Gentile, Yosra Mouelhi, Philippe Brunet, Stéphane Burtey

Published in: BMC Nephrology | Issue 1/2017

Login to get access

Abstract

Background

The main reason for anemia in renal failure patients is the insufficient erythropoietin production by the kidneys. Beside erythropoietin deficiency, in vitro studies have incriminated uremic toxins in the pathophysiology of anemia but clinical data are sparse. In order to assess if indole 3-acetic acid (IAA), indoxyl sulfate (IS), and paracresyl sulfate (PCS) -three protein bound uremic toxins- are clinically implicated in end-stage renal disease anemia we studied the correlation between IAA, IS and PCS plasmatic concentrations with hemoglobin and Erythropoietin Stimulating Agents (ESA) use in hemodialysis patients.

Methods

Between June and July 2014, we conducted an observational cross sectional study in two hemodialysis center. Three statistical approaches were conducted. First, we compared patients treated with ESA and those not treated. Second, we performed linear regression models between IAA, IS, and PCS plasma concentrations and hemoglobin, the ESA dose over hemoglobin ratio (ESA/Hemoglobin) or the ESA resistance index (ERI). Third, we used a polytomous logistic regression model to compare groups of patients with no/low/high ESA dose and low/high hemoglobin statuses.

Results

Overall, 240 patients were included in the study. Mean age ± SD was 67.6 ± 16.0 years, 55.4% were men and 42.5% had diabetes mellitus.
When compared with ESA treated patients, patients with no ESA had higher hemoglobin (mean 11.4 ± 1.1 versus 10.6 ± 1.2 g/dL; p <0.001), higher transferrin saturation (TSAT, 31.1 ± 16.3% versus 23.1 ± 11.5%; p < 0.001), less frequently an IV iron prescription (52.1 versus 65.7%, p = 0.04) and were more frequently treated with hemodiafiltration (53.5 versus 36.7%). In univariate analysis, IAA, IS or PCS plasma concentrations did not differ between the two groups.
In the linear model, IAA plasma concentration was not associated with hemoglobin, but was negatively associated with ESA/Hb (p = 0.02; R = 0.18) and with the ERI (p = 0.03; R = 0.17). IS was associated with none of the three anemia parameters. PCS was positively associated with hemoglobin (p = 0.03; R = 0.14), but negatively with ESA/Hb (p = 0.03; R = 0.17) and the ERI (p = 0.02; R = 0.19). In multivariate analysis, the association of IAA concentration with ESA/Hb or ERI was not statistically significant, neither was the association of PCS with ESA/Hb or ERI. Identically, in the subgroup of 76 patients with no inflammation (CRP <5 mg/L) and no iron deficiency (TSAT >20%) linear regression between IAA, IS or PCS and any anemia parameter did not reach significance.
In the third model, univariate analysis showed no intergroup significant differences for IAA and IS. Regarding PCS, the Low Hb/High ESA group had lower concentrations. However, when we compared PCS with the other significant characteristics of the five groups to the Low Hb/high ESA (our reference group), the polytomous logistic regression model didn’t show any significant difference for PCS.

Conclusions

In our study, using three different statistical models, we were unable to show any correlation between IAA, IS and PCS plasmatic concentrations and any anemia parameter in hemodialysis patients. Indolic uremic toxins and PCS have no or a very low effect on anemia parameters.
Literature
1.
go back to reference Moranne O, Froissart M, Rossert J, Gauci C, Boffa JJ, Haymann JP, M'rad MB, Jacquot C, Houillier P, Stengel B, Fouqueray B, NephroTest Study Group. Timing of onset of CKD-related metabolic complications. J Am Soc Nephrol. 2009 Jan;20(1):164–71.CrossRefPubMedPubMedCentral Moranne O, Froissart M, Rossert J, Gauci C, Boffa JJ, Haymann JP, M'rad MB, Jacquot C, Houillier P, Stengel B, Fouqueray B, NephroTest Study Group. Timing of onset of CKD-related metabolic complications. J Am Soc Nephrol. 2009 Jan;20(1):164–71.CrossRefPubMedPubMedCentral
2.
go back to reference Disease K, Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl. 2013;3:1–150.CrossRef Disease K, Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl. 2013;3:1–150.CrossRef
3.
go back to reference Macdougall IC. Role of uremic toxins in exacerbating anemia in renal failure. Kidney Int Suppl. 2001 Feb;78:S67–72.CrossRefPubMed Macdougall IC. Role of uremic toxins in exacerbating anemia in renal failure. Kidney Int Suppl. 2001 Feb;78:S67–72.CrossRefPubMed
5.
go back to reference Pfeffer MA, Burdmann EA, Chen CY, Cooper ME, de Zeeuw D, Eckardt KU, Feyzi JM, Ivanovich P, Kewalramani R, Levey AS, Lewis EF, McGill JB, McMurray JJ, Parfrey P, Parving HH, Remuzzi G, Singh AK, Solomon SD, Toto R. TREAT investigators. A trial of darbepoetin alfa in type 2 diabetes and chronic kidney disease. N Engl J Med. 2009 Nov 19;361(21):2019–32.CrossRefPubMed Pfeffer MA, Burdmann EA, Chen CY, Cooper ME, de Zeeuw D, Eckardt KU, Feyzi JM, Ivanovich P, Kewalramani R, Levey AS, Lewis EF, McGill JB, McMurray JJ, Parfrey P, Parving HH, Remuzzi G, Singh AK, Solomon SD, Toto R. TREAT investigators. A trial of darbepoetin alfa in type 2 diabetes and chronic kidney disease. N Engl J Med. 2009 Nov 19;361(21):2019–32.CrossRefPubMed
6.
go back to reference Kushner DS, Beckman B, Nguyen L, Chen S, Della Santina C, Husserl F, Rice J, Fisher JW. Polyamines in the anemia of end-stage renal disease. Kidney Int. 1991 Apr;39(4):725–32.CrossRefPubMed Kushner DS, Beckman B, Nguyen L, Chen S, Della Santina C, Husserl F, Rice J, Fisher JW. Polyamines in the anemia of end-stage renal disease. Kidney Int. 1991 Apr;39(4):725–32.CrossRefPubMed
7.
go back to reference Chiang CK, Tanaka T, Inagi R, Fujita T, Nangaku M. Indoxyl sulfate, a representative uremic toxin, suppresses erythropoietin production in a HIF-dependent manner. Lab Investig. 2011;91:1564–71.CrossRefPubMed Chiang CK, Tanaka T, Inagi R, Fujita T, Nangaku M. Indoxyl sulfate, a representative uremic toxin, suppresses erythropoietin production in a HIF-dependent manner. Lab Investig. 2011;91:1564–71.CrossRefPubMed
8.
go back to reference Gondouin B, Cerini C, Dou L, Sallée M, Duval-Sabatier A, Pletinck A, Calaf R, Lacroix R, Jourde-Chiche N, Poitevin S, Arnaud L, Vanholder R, Brunet P, Dignat-George F, Burtey S. Indolic uremic solutes increase tissue factor production in endothelial cells by the aryl hydrocarbon receptor pathway. Kidney Int. 2013 Oct;84(4):733–44.CrossRefPubMed Gondouin B, Cerini C, Dou L, Sallée M, Duval-Sabatier A, Pletinck A, Calaf R, Lacroix R, Jourde-Chiche N, Poitevin S, Arnaud L, Vanholder R, Brunet P, Dignat-George F, Burtey S. Indolic uremic solutes increase tissue factor production in endothelial cells by the aryl hydrocarbon receptor pathway. Kidney Int. 2013 Oct;84(4):733–44.CrossRefPubMed
9.
go back to reference Asai H, Hirata J, Hirano A, Hirai K, Seki S, Watanabe-Akanuma M. Activation of aryl hydrocarbon receptor mediates suppression of hypoxia-inducible factor-dependent erythropoietin expression by indoxyl sulfate. Am J Physiol Cell Physiol. 2016 Jan 15;310(2):C142–50.PubMed Asai H, Hirata J, Hirano A, Hirai K, Seki S, Watanabe-Akanuma M. Activation of aryl hydrocarbon receptor mediates suppression of hypoxia-inducible factor-dependent erythropoietin expression by indoxyl sulfate. Am J Physiol Cell Physiol. 2016 Jan 15;310(2):C142–50.PubMed
10.
go back to reference Ahmed MS, Abed M, Voelkl J, Lang F. Triggering of suicidal erythrocyte death by uremic toxin indoxyl sulfate. BMC Nephrol. 2013 Nov;4:14–244. Ahmed MS, Abed M, Voelkl J, Lang F. Triggering of suicidal erythrocyte death by uremic toxin indoxyl sulfate. BMC Nephrol. 2013 Nov;4:14–244.
11.
go back to reference Wu IW, Hsu KH, Sun CY, Tsai CJ, Wu MS, Lee CC. Oral adsorbent AST-120 potentiates the effect of erythropoietin-stimulating agents on stage 5 chronic kidney disease patients: a randomized crossover study. Nephrol Dial Transplant. 2014 Sep;29(9):1719–27.CrossRefPubMed Wu IW, Hsu KH, Sun CY, Tsai CJ, Wu MS, Lee CC. Oral adsorbent AST-120 potentiates the effect of erythropoietin-stimulating agents on stage 5 chronic kidney disease patients: a randomized crossover study. Nephrol Dial Transplant. 2014 Sep;29(9):1719–27.CrossRefPubMed
12.
go back to reference Gunnell J, Yeun JY, Depner TA, Kaysen GA. Acute-phase response predicts erythropoietin resistance in hemodialysis and peritoneal dialysis patients. Am J Kidney Dis. 1999 Jan;33(1):63–72.CrossRefPubMed Gunnell J, Yeun JY, Depner TA, Kaysen GA. Acute-phase response predicts erythropoietin resistance in hemodialysis and peritoneal dialysis patients. Am J Kidney Dis. 1999 Jan;33(1):63–72.CrossRefPubMed
13.
go back to reference Daugirdas JT. Second generation logarithmic estimates of single-pool variable volume Kt/V: an analysis of error. J Am Soc Nephrol. 1993;4:1205–13.PubMed Daugirdas JT. Second generation logarithmic estimates of single-pool variable volume Kt/V: an analysis of error. J Am Soc Nephrol. 1993;4:1205–13.PubMed
14.
go back to reference Regidor DL, Kopple JD, Kovesdy CP, Kilpatrick RD, McAllister CJ, Aronovitz J, Greenland S, Kalantar-Zadeh K. Associations between changes in hemoglobin and administered erythropoiesis-stimulating agent and survival in hemodialysis patients. J Am Soc Nephrol. 2006 Apr;17(4):1181–91.CrossRefPubMed Regidor DL, Kopple JD, Kovesdy CP, Kilpatrick RD, McAllister CJ, Aronovitz J, Greenland S, Kalantar-Zadeh K. Associations between changes in hemoglobin and administered erythropoiesis-stimulating agent and survival in hemodialysis patients. J Am Soc Nephrol. 2006 Apr;17(4):1181–91.CrossRefPubMed
15.
go back to reference López-Gómez JM, Portolés JM, Aljama P. Factors that condition the response to erythropoietin in patients on hemodialysis and their relation to mortality. Kidney Int Suppl. 2008 Dec;111:S75–81.CrossRef López-Gómez JM, Portolés JM, Aljama P. Factors that condition the response to erythropoietin in patients on hemodialysis and their relation to mortality. Kidney Int Suppl. 2008 Dec;111:S75–81.CrossRef
16.
go back to reference Fukuma S, Yamaguchi T, Hashimoto S, Nakai S, Iseki K, Tsubakihara Y, Fukuhara S. Erythropoiesis-stimulating agent responsiveness and mortality in hemodialysis patients: results from a cohort study from the dialysis registry in Japan. Am J Kidney Dis. 2012 Jan;59(1):108–16.CrossRefPubMed Fukuma S, Yamaguchi T, Hashimoto S, Nakai S, Iseki K, Tsubakihara Y, Fukuhara S. Erythropoiesis-stimulating agent responsiveness and mortality in hemodialysis patients: results from a cohort study from the dialysis registry in Japan. Am J Kidney Dis. 2012 Jan;59(1):108–16.CrossRefPubMed
17.
go back to reference Calaf R, Cerini C, Genovesio C, Verhaeghe P, Jourde-Chiche N, Bergé-Lefranc D, Gondouin B, Dou L, Morange S, Argilés A, Rathelot P, Dignat-George F, Brunet P, Charpiot P. Determination of uremic solutes in biological fluids of chronic kidney disease patients by HPLC assay. J Chromatogr B. 2011;879:2281–6.CrossRef Calaf R, Cerini C, Genovesio C, Verhaeghe P, Jourde-Chiche N, Bergé-Lefranc D, Gondouin B, Dou L, Morange S, Argilés A, Rathelot P, Dignat-George F, Brunet P, Charpiot P. Determination of uremic solutes in biological fluids of chronic kidney disease patients by HPLC assay. J Chromatogr B. 2011;879:2281–6.CrossRef
18.
go back to reference National Kidney Foundation. KDOQI clinical practice guideline for Hemodialysis adequacy: 2015 update. Am J Kidney Dis. 2015 Nov;66(5):884–930.CrossRef National Kidney Foundation. KDOQI clinical practice guideline for Hemodialysis adequacy: 2015 update. Am J Kidney Dis. 2015 Nov;66(5):884–930.CrossRef
19.
go back to reference Wallner SF, Kurnick JE, Ward HP, Vautrin R, Alfrey AC. The anemia of chronic renal failure and chronic diseases: in vitro studies of erythropoiesis. Blood. 1976 Apr;47(4):561–9.PubMed Wallner SF, Kurnick JE, Ward HP, Vautrin R, Alfrey AC. The anemia of chronic renal failure and chronic diseases: in vitro studies of erythropoiesis. Blood. 1976 Apr;47(4):561–9.PubMed
20.
go back to reference Wallner SF, Vautrin RM. The anemia of chronic renal failure: studies of the effect of organic solvent extraction of serum. J Lab Clin Med. 1978 Sep;92(3):363–9.PubMed Wallner SF, Vautrin RM. The anemia of chronic renal failure: studies of the effect of organic solvent extraction of serum. J Lab Clin Med. 1978 Sep;92(3):363–9.PubMed
21.
go back to reference Tanaka T, Yamaguchi J, Higashijima Y, Nangaku M. Indoxyl sulfate signals for rapid mRNA stabilization of Cbp/p300-interacting transactivator with Glu/asp-rich carboxy-terminal domain 2 (CITED2) and suppresses the expression of hypoxia-inducible genes in experimental CKD and uremia. FASEB J. 2013 Oct;27(10):4059–75.CrossRefPubMed Tanaka T, Yamaguchi J, Higashijima Y, Nangaku M. Indoxyl sulfate signals for rapid mRNA stabilization of Cbp/p300-interacting transactivator with Glu/asp-rich carboxy-terminal domain 2 (CITED2) and suppresses the expression of hypoxia-inducible genes in experimental CKD and uremia. FASEB J. 2013 Oct;27(10):4059–75.CrossRefPubMed
22.
go back to reference Dou L, Burtey S. The harmful effect of indoxyl sulfate on neovascularization in chronic kidney disease. Kidney Int. 2016 Mar;89(3):532–4.CrossRefPubMed Dou L, Burtey S. The harmful effect of indoxyl sulfate on neovascularization in chronic kidney disease. Kidney Int. 2016 Mar;89(3):532–4.CrossRefPubMed
23.
go back to reference Huang JY, Hsu CW, Yang CW, Hung CC, Huang WH. Role of anuria in the relationship between indoxyl sulfate and anemia in peritoneal dialysis patients. Ther Clin Risk Manag. 2016 Nov 28;12:1797–803.CrossRefPubMedPubMedCentral Huang JY, Hsu CW, Yang CW, Hung CC, Huang WH. Role of anuria in the relationship between indoxyl sulfate and anemia in peritoneal dialysis patients. Ther Clin Risk Manag. 2016 Nov 28;12:1797–803.CrossRefPubMedPubMedCentral
24.
go back to reference Sallée M, Dou L, Cerini C, Poitevin S, Brunet P, Burtey S. The aryl hydrocarbon receptor-activating effect of uremic toxins from tryptophan metabolism: a new concept to understand cardiovascular complications of chronic kidney disease. Toxins (Basel). 2014 Mar 4;6(3):934–49.CrossRef Sallée M, Dou L, Cerini C, Poitevin S, Brunet P, Burtey S. The aryl hydrocarbon receptor-activating effect of uremic toxins from tryptophan metabolism: a new concept to understand cardiovascular complications of chronic kidney disease. Toxins (Basel). 2014 Mar 4;6(3):934–49.CrossRef
25.
go back to reference Aronov PA, Luo FJ, Plummer NS, Quan Z, Holmes S, Hostetter TH, Meyer TW. Colonic contribution to uremic solutes. J Am Soc Nephrol. 2011 Sep;22(9):1769–76.CrossRefPubMedPubMedCentral Aronov PA, Luo FJ, Plummer NS, Quan Z, Holmes S, Hostetter TH, Meyer TW. Colonic contribution to uremic solutes. J Am Soc Nephrol. 2011 Sep;22(9):1769–76.CrossRefPubMedPubMedCentral
26.
go back to reference Marzocco S, Dal Piaz F, Di Micco L, Torraca S, Sirico ML, Tartaglia D, Autore G, Di Iorio B. Very low protein diet reduces indoxyl sulfate levels in chronic kidney disease. Blood Purif. 2013;35(1–3):196–201.CrossRefPubMed Marzocco S, Dal Piaz F, Di Micco L, Torraca S, Sirico ML, Tartaglia D, Autore G, Di Iorio B. Very low protein diet reduces indoxyl sulfate levels in chronic kidney disease. Blood Purif. 2013;35(1–3):196–201.CrossRefPubMed
27.
go back to reference Niwa T, Yazawa T, Ise M, Sugano M, Kodama T, Uehara Y, Maeda K. Inhibitory effect of oral sorbent on accumulation of albumin-bound indoxyl sulfate in serum of experimental uremic rats. Nephron. 1991;57(1):84–8.CrossRefPubMed Niwa T, Yazawa T, Ise M, Sugano M, Kodama T, Uehara Y, Maeda K. Inhibitory effect of oral sorbent on accumulation of albumin-bound indoxyl sulfate in serum of experimental uremic rats. Nephron. 1991;57(1):84–8.CrossRefPubMed
Metadata
Title
Indole 3-acetic acid, indoxyl sulfate and paracresyl-sulfate do not influence anemia parameters in hemodialysis patients
Authors
Stanislas Bataille
Marion Pelletier
Marion Sallée
Yvon Berland
Nathalie McKay
Ariane Duval
Stéphanie Gentile
Yosra Mouelhi
Philippe Brunet
Stéphane Burtey
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Nephrology / Issue 1/2017
Electronic ISSN: 1471-2369
DOI
https://doi.org/10.1186/s12882-017-0668-5

Other articles of this Issue 1/2017

BMC Nephrology 1/2017 Go to the issue